Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

105 行
3.3 KiB

import unittest.mock as mock
import pytest
import yaml
import mlagents.trainers.tests.mock_brain as mb
import numpy as np
from mlagents.trainers.rl_trainer import RLTrainer
from mlagents.trainers.tests.test_buffer import construct_fake_processing_buffer
from mlagents.trainers.buffer import AgentBuffer
@pytest.fixture
def dummy_config():
return yaml.safe_load(
"""
summary_path: "test/"
reward_signals:
extrinsic:
strength: 1.0
gamma: 0.99
"""
)
def create_mock_brain():
mock_brain = mb.create_mock_brainparams(
vector_action_space_type="continuous",
vector_action_space_size=[2],
vector_observation_space_size=8,
number_visual_observations=1,
)
return mock_brain
def create_rl_trainer():
mock_brainparams = create_mock_brain()
trainer = RLTrainer(mock_brainparams, dummy_config(), True, 0)
return trainer
def create_mock_all_brain_info(brain_info):
return {"MockBrain": brain_info}
def create_mock_policy():
mock_policy = mock.Mock()
mock_policy.reward_signals = {}
mock_policy.retrieve_memories.return_value = np.zeros((1, 1))
mock_policy.retrieve_previous_action.return_value = np.zeros((1, 1))
return mock_policy
@mock.patch("mlagents.trainers.rl_trainer.RLTrainer.add_policy_outputs")
@mock.patch("mlagents.trainers.rl_trainer.RLTrainer.add_rewards_outputs")
@pytest.mark.parametrize("num_vis_obs", [0, 1, 2], ids=["vec", "1 viz", "2 viz"])
def test_rl_trainer(add_policy_outputs, add_rewards_outputs, num_vis_obs):
trainer = create_rl_trainer()
trainer.policy = create_mock_policy()
fake_action_outputs = {
"action": [0.1, 0.1],
"value_heads": {},
"entropy": np.array([1.0]),
"learning_rate": 1.0,
}
mock_braininfo = mb.create_mock_braininfo(
num_agents=2,
num_vector_observations=8,
num_vector_acts=2,
num_vis_observations=num_vis_obs,
)
trainer.add_experiences(mock_braininfo, mock_braininfo, fake_action_outputs)
# Remove one of the agents
next_mock_braininfo = mb.create_mock_braininfo(
num_agents=1,
num_vector_observations=8,
num_vector_acts=2,
num_vis_observations=num_vis_obs,
)
brain_info = trainer.construct_curr_info(next_mock_braininfo)
# assert construct_curr_info worked properly
assert len(brain_info.agents) == 1
assert len(brain_info.visual_observations) == num_vis_obs
assert len(brain_info.vector_observations) == 1
# Test end episode
trainer.end_episode()
for agent_id in trainer.episode_steps:
assert trainer.episode_steps[agent_id] == 0
assert len(trainer.processing_buffer[agent_id]["action"]) == 0
for rewards in trainer.collected_rewards.values():
for agent_id in rewards:
assert rewards[agent_id] == 0
def test_clear_update_buffer():
trainer = create_rl_trainer()
trainer.processing_buffer = construct_fake_processing_buffer()
trainer.update_buffer = AgentBuffer()
trainer.processing_buffer.append_to_update_buffer(
trainer.update_buffer, 2, batch_size=None, training_length=2
)
trainer.clear_update_buffer()
for _, arr in trainer.update_buffer.items():
assert len(arr) == 0