您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
402 行
14 KiB
402 行
14 KiB
import unittest.mock as mock
|
|
import pytest
|
|
|
|
import numpy as np
|
|
from mlagents.tf_utils import tf
|
|
|
|
import yaml
|
|
|
|
from mlagents.trainers.ppo.models import PPOModel
|
|
from mlagents.trainers.ppo.trainer import PPOTrainer, discount_rewards
|
|
from mlagents.trainers.ppo.policy import PPOPolicy
|
|
from mlagents.trainers.rl_trainer import AllRewardsOutput
|
|
from mlagents.trainers.components.reward_signals import RewardSignalResult
|
|
from mlagents.envs.brain import BrainParameters
|
|
from mlagents.envs.environment import UnityEnvironment
|
|
from mlagents.envs.mock_communicator import MockCommunicator
|
|
from mlagents.trainers.tests import mock_brain as mb
|
|
from mlagents.trainers.tests.mock_brain import make_brain_parameters
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_config():
|
|
return yaml.safe_load(
|
|
"""
|
|
trainer: ppo
|
|
batch_size: 32
|
|
beta: 5.0e-3
|
|
buffer_size: 512
|
|
epsilon: 0.2
|
|
hidden_units: 128
|
|
lambd: 0.95
|
|
learning_rate: 3.0e-4
|
|
max_steps: 5.0e4
|
|
normalize: true
|
|
num_epoch: 5
|
|
num_layers: 2
|
|
time_horizon: 64
|
|
sequence_length: 64
|
|
summary_freq: 1000
|
|
use_recurrent: false
|
|
memory_size: 8
|
|
curiosity_strength: 0.0
|
|
curiosity_enc_size: 1
|
|
summary_path: test
|
|
model_path: test
|
|
reward_signals:
|
|
extrinsic:
|
|
strength: 1.0
|
|
gamma: 0.99
|
|
"""
|
|
)
|
|
|
|
|
|
VECTOR_ACTION_SPACE = [2]
|
|
VECTOR_OBS_SPACE = 8
|
|
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
|
|
BUFFER_INIT_SAMPLES = 32
|
|
NUM_AGENTS = 12
|
|
|
|
|
|
@mock.patch("mlagents.envs.environment.UnityEnvironment.executable_launcher")
|
|
@mock.patch("mlagents.envs.environment.UnityEnvironment.get_communicator")
|
|
def test_ppo_policy_evaluate(mock_communicator, mock_launcher, dummy_config):
|
|
tf.reset_default_graph()
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=False, visual_inputs=0
|
|
)
|
|
env = UnityEnvironment(" ")
|
|
brain_infos = env.reset()
|
|
brain_info = brain_infos[env.external_brain_names[0]]
|
|
|
|
trainer_parameters = dummy_config
|
|
model_path = env.external_brain_names[0]
|
|
trainer_parameters["model_path"] = model_path
|
|
trainer_parameters["keep_checkpoints"] = 3
|
|
policy = PPOPolicy(
|
|
0, env.brains[env.external_brain_names[0]], trainer_parameters, False, False
|
|
)
|
|
run_out = policy.evaluate(brain_info)
|
|
assert run_out["action"].shape == (3, 2)
|
|
env.close()
|
|
|
|
|
|
@mock.patch("mlagents.envs.environment.UnityEnvironment.executable_launcher")
|
|
@mock.patch("mlagents.envs.environment.UnityEnvironment.get_communicator")
|
|
def test_ppo_get_value_estimates(mock_communicator, mock_launcher, dummy_config):
|
|
tf.reset_default_graph()
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=False, visual_inputs=0
|
|
)
|
|
env = UnityEnvironment(" ")
|
|
brain_infos = env.reset()
|
|
brain_info = brain_infos[env.external_brain_names[0]]
|
|
|
|
trainer_parameters = dummy_config
|
|
model_path = env.external_brain_names[0]
|
|
trainer_parameters["model_path"] = model_path
|
|
trainer_parameters["keep_checkpoints"] = 3
|
|
policy = PPOPolicy(
|
|
0, env.brains[env.external_brain_names[0]], trainer_parameters, False, False
|
|
)
|
|
run_out = policy.get_value_estimates(brain_info, 0, done=False)
|
|
for key, val in run_out.items():
|
|
assert type(key) is str
|
|
assert type(val) is float
|
|
|
|
run_out = policy.get_value_estimates(brain_info, 0, done=True)
|
|
for key, val in run_out.items():
|
|
assert type(key) is str
|
|
assert val == 0.0
|
|
|
|
# Check if we ignore terminal states properly
|
|
policy.reward_signals["extrinsic"].use_terminal_states = False
|
|
run_out = policy.get_value_estimates(brain_info, 0, done=True)
|
|
for key, val in run_out.items():
|
|
assert type(key) is str
|
|
assert val != 0.0
|
|
|
|
env.close()
|
|
|
|
|
|
def test_ppo_model_cc_vector():
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
model = PPOModel(
|
|
make_brain_parameters(discrete_action=False, visual_inputs=0)
|
|
)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [
|
|
model.output,
|
|
model.log_probs,
|
|
model.value,
|
|
model.entropy,
|
|
model.learning_rate,
|
|
]
|
|
feed_dict = {
|
|
model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
model.epsilon: np.array([[0, 1], [2, 3]]),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
|
|
|
|
def test_ppo_model_cc_visual():
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
model = PPOModel(
|
|
make_brain_parameters(discrete_action=False, visual_inputs=2)
|
|
)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [
|
|
model.output,
|
|
model.log_probs,
|
|
model.value,
|
|
model.entropy,
|
|
model.learning_rate,
|
|
]
|
|
feed_dict = {
|
|
model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3]),
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3]),
|
|
model.epsilon: np.array([[0, 1], [2, 3]]),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
|
|
|
|
def test_ppo_model_dc_visual():
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
model = PPOModel(
|
|
make_brain_parameters(discrete_action=True, visual_inputs=2)
|
|
)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [
|
|
model.output,
|
|
model.all_log_probs,
|
|
model.value,
|
|
model.entropy,
|
|
model.learning_rate,
|
|
]
|
|
feed_dict = {
|
|
model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3]),
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3]),
|
|
model.action_masks: np.ones([2, 2]),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
|
|
|
|
def test_ppo_model_dc_vector():
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
model = PPOModel(
|
|
make_brain_parameters(discrete_action=True, visual_inputs=0)
|
|
)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [
|
|
model.output,
|
|
model.all_log_probs,
|
|
model.value,
|
|
model.entropy,
|
|
model.learning_rate,
|
|
]
|
|
feed_dict = {
|
|
model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
model.action_masks: np.ones([2, 2]),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
|
|
|
|
def test_ppo_model_dc_vector_rnn():
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
memory_size = 128
|
|
model = PPOModel(
|
|
make_brain_parameters(discrete_action=True, visual_inputs=0),
|
|
use_recurrent=True,
|
|
m_size=memory_size,
|
|
)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [
|
|
model.output,
|
|
model.all_log_probs,
|
|
model.value,
|
|
model.entropy,
|
|
model.learning_rate,
|
|
model.memory_out,
|
|
]
|
|
feed_dict = {
|
|
model.batch_size: 1,
|
|
model.sequence_length: 2,
|
|
model.prev_action: [[0], [0]],
|
|
model.memory_in: np.zeros((1, memory_size)),
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
model.action_masks: np.ones([1, 2]),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
|
|
|
|
def test_ppo_model_cc_vector_rnn():
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
memory_size = 128
|
|
model = PPOModel(
|
|
make_brain_parameters(discrete_action=False, visual_inputs=0),
|
|
use_recurrent=True,
|
|
m_size=memory_size,
|
|
)
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [
|
|
model.output,
|
|
model.all_log_probs,
|
|
model.value,
|
|
model.entropy,
|
|
model.learning_rate,
|
|
model.memory_out,
|
|
]
|
|
feed_dict = {
|
|
model.batch_size: 1,
|
|
model.sequence_length: 2,
|
|
model.memory_in: np.zeros((1, memory_size)),
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
model.epsilon: np.array([[0, 1]]),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
|
|
|
|
def test_rl_functions():
|
|
rewards = np.array([0.0, 0.0, 0.0, 1.0])
|
|
gamma = 0.9
|
|
returns = discount_rewards(rewards, gamma, 0.0)
|
|
np.testing.assert_array_almost_equal(returns, np.array([0.729, 0.81, 0.9, 1.0]))
|
|
|
|
|
|
def test_trainer_increment_step(dummy_config):
|
|
trainer_params = dummy_config
|
|
brain_params = BrainParameters(
|
|
brain_name="test_brain",
|
|
vector_observation_space_size=1,
|
|
camera_resolutions=[],
|
|
vector_action_space_size=[2],
|
|
vector_action_descriptions=[],
|
|
vector_action_space_type=0,
|
|
)
|
|
|
|
trainer = PPOTrainer(brain_params, 0, trainer_params, True, False, 0, "0", False)
|
|
policy_mock = mock.Mock()
|
|
step_count = 10
|
|
policy_mock.increment_step = mock.Mock(return_value=step_count)
|
|
trainer.policy = policy_mock
|
|
|
|
trainer.increment_step(5)
|
|
policy_mock.increment_step.assert_called_with(5)
|
|
assert trainer.step == 10
|
|
|
|
|
|
@mock.patch("mlagents.envs.environment.UnityEnvironment")
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
def test_trainer_update_policy(mock_env, dummy_config, use_discrete):
|
|
env, mock_brain, _ = mb.setup_mock_env_and_brains(
|
|
mock_env,
|
|
use_discrete,
|
|
False,
|
|
num_agents=NUM_AGENTS,
|
|
vector_action_space=VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE,
|
|
discrete_action_space=DISCRETE_ACTION_SPACE,
|
|
)
|
|
|
|
trainer_params = dummy_config
|
|
trainer_params["use_recurrent"] = True
|
|
|
|
# Test curiosity reward signal
|
|
trainer_params["reward_signals"]["curiosity"] = {}
|
|
trainer_params["reward_signals"]["curiosity"]["strength"] = 1.0
|
|
trainer_params["reward_signals"]["curiosity"]["gamma"] = 0.99
|
|
trainer_params["reward_signals"]["curiosity"]["encoding_size"] = 128
|
|
|
|
trainer = PPOTrainer(mock_brain, 0, trainer_params, True, False, 0, "0", False)
|
|
# Test update with sequence length smaller than batch size
|
|
buffer = mb.simulate_rollout(env, trainer.policy, BUFFER_INIT_SAMPLES)
|
|
# Mock out reward signal eval
|
|
buffer["extrinsic_rewards"] = buffer["rewards"]
|
|
buffer["extrinsic_returns"] = buffer["rewards"]
|
|
buffer["extrinsic_value_estimates"] = buffer["rewards"]
|
|
buffer["curiosity_rewards"] = buffer["rewards"]
|
|
buffer["curiosity_returns"] = buffer["rewards"]
|
|
buffer["curiosity_value_estimates"] = buffer["rewards"]
|
|
|
|
trainer.update_buffer = buffer
|
|
trainer.update_policy()
|
|
# Make batch length a larger multiple of sequence length
|
|
trainer.trainer_parameters["batch_size"] = 128
|
|
trainer.update_policy()
|
|
# Make batch length a larger non-multiple of sequence length
|
|
trainer.trainer_parameters["batch_size"] = 100
|
|
trainer.update_policy()
|
|
|
|
|
|
def test_add_rewards_output(dummy_config):
|
|
brain_params = BrainParameters(
|
|
brain_name="test_brain",
|
|
vector_observation_space_size=1,
|
|
camera_resolutions=[],
|
|
vector_action_space_size=[2],
|
|
vector_action_descriptions=[],
|
|
vector_action_space_type=0,
|
|
)
|
|
dummy_config["summary_path"] = "./summaries/test_trainer_summary"
|
|
dummy_config["model_path"] = "./models/test_trainer_models/TestModel"
|
|
trainer = PPOTrainer(brain_params, 0, dummy_config, True, False, 0, "0", False)
|
|
rewardsout = AllRewardsOutput(
|
|
reward_signals={
|
|
"extrinsic": RewardSignalResult(
|
|
scaled_reward=np.array([1.0, 1.0]), unscaled_reward=np.array([1.0, 1.0])
|
|
)
|
|
},
|
|
environment=np.array([1.0, 1.0]),
|
|
)
|
|
values = {"extrinsic": np.array([[2.0]])}
|
|
agent_id = "123"
|
|
idx = 0
|
|
# make sure that we're grabbing from the next_idx for rewards. If we're not, the test will fail.
|
|
next_idx = 1
|
|
trainer.add_rewards_outputs(
|
|
rewardsout,
|
|
values=values,
|
|
agent_id=agent_id,
|
|
agent_idx=idx,
|
|
agent_next_idx=next_idx,
|
|
)
|
|
assert trainer.processing_buffer[agent_id]["extrinsic_value_estimates"][0] == 2.0
|
|
assert trainer.processing_buffer[agent_id]["extrinsic_rewards"][0] == 1.0
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main()
|