Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

111 行
5.5 KiB

using System.Collections.Generic;
using System.Runtime.InteropServices.ComTypes;
using Barracuda;
namespace MLAgents.InferenceBrain
{
/// <summary>
/// Mapping between Tensor names and generators.
/// A TensorGenerator implements a Dictionary of strings (node names) to an Action.
/// The Action take as argument the tensor, the current batch size and a Dictionary of
/// Agent to AgentInfo corresponding to the current batch.
/// Each Generator reshapes and fills the data of the tensor based of the data of the batch.
/// When the TensorProxy is an Input to the model, the shape of the Tensor will be modified
/// depending on the current batch size and the data of the Tensor will be filled using the
/// Dictionary of Agent to AgentInfo.
/// When the TensorProxy is an Output of the model, only the shape of the Tensor will be modified
/// using the current batch size. The data will be prefilled with zeros.
/// </summary>
public class TensorGenerator
{
public interface Generator
{
/// <summary>
/// Modifies the data inside a Tensor according to the information contained in the
/// AgentInfos contained in the current batch.
/// </summary>
/// <param name="tensorProxy"> The tensor the data and shape will be modified</param>
/// <param name="batchSize"> The number of agents present in the current batch</param>
/// <param name="agentInfo"> Dictionary of Agent to AgentInfo containing the
/// information that will be used to populate the tensor's data</param>
void Generate(TensorProxy tensorProxy, int batchSize, Dictionary<Agent, AgentInfo> agentInfo);
}
Dictionary<string, Generator> _dict = new Dictionary<string, Generator>();
ITensorAllocator _allocator;
/// <summary>
/// Returns a new TensorGenerators object.
/// </summary>
/// <param name="bp"> The BrainParameters used to determine what Generators will be
/// used</param>
/// <param name="seed"> The seed the Generators will be initialized with.</param>
/// <param name="allocator"> Tensor allocator</param>
public TensorGenerator(BrainParameters bp, int seed, ITensorAllocator allocator, object barracudaModel = null)
{
_allocator = allocator;
// Generator for Inputs
_dict[TensorNames.BatchSizePlaceholder] = new BatchSizeGenerator(_allocator);
_dict[TensorNames.SequenceLengthPlaceholder] = new SequenceLengthGenerator(_allocator);
_dict[TensorNames.VectorObservationPlacholder] = new VectorObservationGenerator(_allocator);
_dict[TensorNames.RecurrentInPlaceholder] = new RecurrentInputGenerator(_allocator);
if (barracudaModel != null)
{
Model model = (Model) barracudaModel;
for (var i = 0; i < model?.memories.Length; i++)
{
_dict[model.memories[i].input] = new BarracudaRecurrentInputGenerator(i, _allocator);
}
}
_dict[TensorNames.PreviousActionPlaceholder] = new PreviousActionInputGenerator(_allocator);
_dict[TensorNames.ActionMaskPlaceholder] = new ActionMaskInputGenerator(_allocator);
_dict[TensorNames.RandomNormalEpsilonPlaceholder] = new RandomNormalInputGenerator(seed, _allocator);
if (bp.cameraResolutions != null)
{
for (var visIndex = 0;
visIndex < bp.cameraResolutions.Length;
visIndex++)
{
var index = visIndex;
var bw = bp.cameraResolutions[visIndex].blackAndWhite;
_dict[TensorNames.VisualObservationPlaceholderPrefix + visIndex] = new
VisualObservationInputGenerator(index, bw, _allocator);
}
}
// Generators for Outputs
_dict[TensorNames.ActionOutput] = new BiDimensionalOutputGenerator(_allocator);
_dict[TensorNames.RecurrentOutput] = new BiDimensionalOutputGenerator(_allocator);
_dict[TensorNames.ValueEstimateOutput] = new BiDimensionalOutputGenerator(_allocator);
}
/// <summary>
/// Populates the data of the tensor inputs given the data contained in the current batch
/// of agents.
/// </summary>
/// <param name="tensors"> Enumerable of tensors that will be modified.</param>
/// <param name="currentBatchSize"> The number of agents present in the current batch
/// </param>
/// <param name="agentInfos"> Dictionary of Agent to AgentInfo that contains the
/// data that will be used to modify the tensors</param>
/// <exception cref="UnityAgentsException"> One of the tensor does not have an
/// associated generator.</exception>
public void GenerateTensors(IEnumerable<TensorProxy> tensors,
int currentBatchSize,
Dictionary<Agent, AgentInfo> agentInfos)
{
foreach (var tensor in tensors)
{
if (!_dict.ContainsKey(tensor.Name))
{
throw new UnityAgentsException(
"Unknow tensorProxy expected as input : " + tensor.Name);
}
_dict[tensor.Name].Generate(tensor, currentBatchSize, agentInfos);
}
}
}
}