您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
308 行
11 KiB
308 行
11 KiB
using System.Collections.Generic;
|
|
using System;
|
|
using System.Linq;
|
|
using Barracuda;
|
|
using MLAgents.InferenceBrain.Utils;
|
|
|
|
namespace MLAgents.InferenceBrain
|
|
{
|
|
/// <summary>
|
|
/// Reshapes a Tensor so that its first dimension becomes equal to the current batch size
|
|
/// and initializes its content to be zeros. Will only work on 2-dimensional tensors.
|
|
/// The second dimension of the Tensor will not be modified.
|
|
/// </summary>
|
|
public class BiDimensionalOutputGenerator : TensorGenerator.Generator
|
|
{
|
|
private ITensorAllocator _allocator;
|
|
|
|
public BiDimensionalOutputGenerator(ITensorAllocator allocator)
|
|
{
|
|
_allocator = allocator;
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary<Agent, AgentInfo> agentInfo)
|
|
{
|
|
TensorUtils.ResizeTensor(tensorProxy, batchSize, _allocator);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates the Tensor corresponding to the BatchSize input : Will be a one dimensional
|
|
/// integer array of size 1 containing the batch size.
|
|
/// </summary>
|
|
public class BatchSizeGenerator : TensorGenerator.Generator
|
|
{
|
|
private ITensorAllocator _allocator;
|
|
|
|
public BatchSizeGenerator(ITensorAllocator allocator)
|
|
{
|
|
_allocator = allocator;
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary<Agent, AgentInfo> agentInfo)
|
|
{
|
|
tensorProxy.Data = _allocator.Alloc(new TensorShape(1,1));
|
|
tensorProxy.Data[0] = batchSize;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates the Tensor corresponding to the SequenceLength input : Will be a one
|
|
/// dimensional integer array of size 1 containing 1.
|
|
/// Note : the sequence length is always one since recurrent networks only predict for
|
|
/// one step at the time.
|
|
/// </summary>
|
|
public class SequenceLengthGenerator : TensorGenerator.Generator
|
|
{
|
|
private ITensorAllocator _allocator;
|
|
|
|
public SequenceLengthGenerator(ITensorAllocator allocator)
|
|
{
|
|
_allocator = allocator;
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary<Agent, AgentInfo> agentInfo)
|
|
{
|
|
tensorProxy.Shape = new long[0];
|
|
tensorProxy.Data = _allocator.Alloc(new TensorShape(1,1));
|
|
|
|
tensorProxy.Data[0] = 1;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates the Tensor corresponding to the VectorObservation input : Will be a two
|
|
/// dimensional float array of dimension [batchSize x vectorObservationSize].
|
|
/// It will use the Vector Observation data contained in the agentInfo to fill the data
|
|
/// of the tensor.
|
|
/// </summary>
|
|
public class VectorObservationGenerator : TensorGenerator.Generator
|
|
{
|
|
private ITensorAllocator _allocator;
|
|
public VectorObservationGenerator(ITensorAllocator allocator)
|
|
{
|
|
_allocator = allocator;
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary<Agent, AgentInfo> agentInfo)
|
|
{
|
|
TensorUtils.ResizeTensor(tensorProxy, batchSize, _allocator);
|
|
var vecObsSizeT = tensorProxy.Shape[tensorProxy.Shape.Length - 1];
|
|
|
|
var agentIndex = 0;
|
|
foreach (var agent in agentInfo.Keys)
|
|
{
|
|
var vectorObs = agentInfo[agent].stackedVectorObservation;
|
|
for (var j = 0; j < vecObsSizeT; j++)
|
|
{
|
|
tensorProxy.Data[agentIndex, j] = vectorObs[j];
|
|
}
|
|
agentIndex++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates the Tensor corresponding to the Recurrent input : Will be a two
|
|
/// dimensional float array of dimension [batchSize x memorySize].
|
|
/// It will use the Memory data contained in the agentInfo to fill the data
|
|
/// of the tensor.
|
|
/// </summary>
|
|
public class RecurrentInputGenerator : TensorGenerator.Generator
|
|
{
|
|
private ITensorAllocator _allocator;
|
|
|
|
public RecurrentInputGenerator(ITensorAllocator allocator)
|
|
{
|
|
_allocator = allocator;
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary<Agent, AgentInfo> agentInfo)
|
|
{
|
|
TensorUtils.ResizeTensor(tensorProxy, batchSize, _allocator);
|
|
|
|
var memorySize = tensorProxy.Shape[tensorProxy.Shape.Length - 1];
|
|
var agentIndex = 0;
|
|
foreach (var agent in agentInfo.Keys)
|
|
{
|
|
var memory = agentInfo[agent].memories;
|
|
if (memory == null)
|
|
{
|
|
agentIndex++;
|
|
continue;
|
|
}
|
|
for (var j = 0; j < Math.Min(memorySize, memory.Count); j++)
|
|
{
|
|
if (j >= memory.Count)
|
|
{
|
|
break;
|
|
}
|
|
tensorProxy.Data[agentIndex, j] = memory[j];
|
|
}
|
|
agentIndex++;
|
|
}
|
|
}
|
|
}
|
|
|
|
public class BarracudaRecurrentInputGenerator : TensorGenerator.Generator
|
|
{
|
|
private int memoriesCount;
|
|
private int memoryIndex;
|
|
private ITensorAllocator _allocator;
|
|
|
|
public BarracudaRecurrentInputGenerator(int memoryIndex, ITensorAllocator allocator)
|
|
{
|
|
this.memoryIndex = memoryIndex;
|
|
_allocator = allocator;
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary<Agent, AgentInfo> agentInfo)
|
|
{
|
|
TensorUtils.ResizeTensor(tensorProxy, batchSize, _allocator);
|
|
|
|
var memorySize = (int)tensorProxy.Shape[tensorProxy.Shape.Length - 1];
|
|
var agentIndex = 0;
|
|
foreach (var agent in agentInfo.Keys)
|
|
{
|
|
var memory = agentInfo[agent].memories;
|
|
|
|
int offset = memorySize * memoryIndex;
|
|
|
|
if (memory == null)
|
|
{
|
|
agentIndex++;
|
|
continue;
|
|
}
|
|
for (var j = 0; j < memorySize; j++)
|
|
{
|
|
if (j >= memory.Count)
|
|
{
|
|
break;
|
|
}
|
|
tensorProxy.Data[agentIndex, j] = memory[j + offset];
|
|
}
|
|
agentIndex++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates the Tensor corresponding to the Previous Action input : Will be a two
|
|
/// dimensional integer array of dimension [batchSize x actionSize].
|
|
/// It will use the previous action data contained in the agentInfo to fill the data
|
|
/// of the tensor.
|
|
/// </summary>
|
|
public class PreviousActionInputGenerator : TensorGenerator.Generator
|
|
{
|
|
private ITensorAllocator _allocator;
|
|
|
|
public PreviousActionInputGenerator(ITensorAllocator allocator)
|
|
{
|
|
_allocator = allocator;
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary<Agent, AgentInfo> agentInfo)
|
|
{
|
|
TensorUtils.ResizeTensor(tensorProxy, batchSize, _allocator);
|
|
|
|
var actionSize = tensorProxy.Shape[tensorProxy.Shape.Length - 1];
|
|
var agentIndex = 0;
|
|
foreach (var agent in agentInfo.Keys)
|
|
{
|
|
var pastAction = agentInfo[agent].storedVectorActions;
|
|
for (var j = 0; j < actionSize; j++)
|
|
{
|
|
tensorProxy.Data[agentIndex, j] = pastAction[j];
|
|
}
|
|
|
|
agentIndex++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates the Tensor corresponding to the Action Mask input : Will be a two
|
|
/// dimensional float array of dimension [batchSize x numActionLogits].
|
|
/// It will use the Action Mask data contained in the agentInfo to fill the data
|
|
/// of the tensor.
|
|
/// </summary>
|
|
public class ActionMaskInputGenerator : TensorGenerator.Generator
|
|
{
|
|
private ITensorAllocator _allocator;
|
|
|
|
public ActionMaskInputGenerator(ITensorAllocator allocator)
|
|
{
|
|
_allocator = allocator;
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary<Agent, AgentInfo> agentInfo)
|
|
{
|
|
TensorUtils.ResizeTensor(tensorProxy, batchSize, _allocator);
|
|
|
|
var maskSize = tensorProxy.Shape[tensorProxy.Shape.Length - 1];
|
|
var agentIndex = 0;
|
|
foreach (var agent in agentInfo.Keys)
|
|
{
|
|
var maskList = agentInfo[agent].actionMasks;
|
|
for (var j = 0; j < maskSize; j++)
|
|
{
|
|
var isUnmasked = (maskList != null && maskList[j]) ? 0.0f : 1.0f;
|
|
tensorProxy.Data[agentIndex, j] = isUnmasked;
|
|
}
|
|
agentIndex++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates the Tensor corresponding to the Epsilon input : Will be a two
|
|
/// dimensional float array of dimension [batchSize x actionSize].
|
|
/// It will use the generate random input data from a normal Distribution.
|
|
/// </summary>
|
|
public class RandomNormalInputGenerator : TensorGenerator.Generator
|
|
{
|
|
private RandomNormal _randomNormal;
|
|
private ITensorAllocator _allocator;
|
|
|
|
public RandomNormalInputGenerator(int seed, ITensorAllocator allocator)
|
|
{
|
|
_randomNormal = new RandomNormal(seed);
|
|
_allocator = allocator;
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary<Agent, AgentInfo> agentInfo)
|
|
{
|
|
TensorUtils.ResizeTensor(tensorProxy, batchSize, _allocator);
|
|
_randomNormal.FillTensor(tensorProxy);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates the Tensor corresponding to the Visual Observation input : Will be a 4
|
|
/// dimensional float array of dimension [batchSize x width x heigth x numChannels].
|
|
/// It will use the Texture input data contained in the agentInfo to fill the data
|
|
/// of the tensor.
|
|
/// </summary>
|
|
public class VisualObservationInputGenerator : TensorGenerator.Generator
|
|
{
|
|
private int _index;
|
|
private bool _grayScale;
|
|
private ITensorAllocator _allocator;
|
|
|
|
public VisualObservationInputGenerator(int index, bool grayScale, ITensorAllocator allocator)
|
|
{
|
|
_index = index;
|
|
_grayScale = grayScale;
|
|
_allocator = allocator;
|
|
}
|
|
|
|
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary<Agent, AgentInfo> agentInfo)
|
|
{
|
|
var textures = agentInfo.Keys.Select(
|
|
agent => agentInfo[agent].visualObservations[_index]).ToList();
|
|
|
|
TensorUtils.ResizeTensor(tensorProxy, batchSize, _allocator);
|
|
Utilities.TextureToTensorProxy(tensorProxy, textures, _grayScale, _allocator);
|
|
}
|
|
}
|
|
}
|