Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

156 行
5.8 KiB

import os
from typing import Dict
from mlagents_envs.logging_util import get_logger
from mlagents.trainers.environment_parameter_manager import EnvironmentParameterManager
from mlagents.trainers.exception import TrainerConfigError
from mlagents.trainers.trainer import Trainer
from mlagents.trainers.ppo.trainer import PPOTrainer
from mlagents.trainers.sac.trainer import SACTrainer
from mlagents.trainers.poca.trainer import POCATrainer
from mlagents.trainers.ghost.trainer import GhostTrainer
from mlagents.trainers.ghost.controller import GhostController
from mlagents.trainers.settings import TrainerSettings, TrainerType
logger = get_logger(__name__)
class TrainerFactory:
def __init__(
self,
trainer_config: Dict[str, TrainerSettings],
output_path: str,
train_model: bool,
load_model: bool,
seed: int,
param_manager: EnvironmentParameterManager,
init_path: str = None,
multi_gpu: bool = False,
):
"""
The TrainerFactory generates the Trainers based on the configuration passed as
input.
:param trainer_config: A dictionary from behavior name to TrainerSettings
:param output_path: The path to the directory where the artifacts generated by
the trainer will be saved.
:param train_model: If True, the Trainers will train the model and if False,
only perform inference.
:param load_model: If True, the Trainer will load neural networks weights from
the previous run.
:param seed: The seed of the Trainers. Dictates how the neural networks will be
initialized.
:param param_manager: The EnvironmentParameterManager that will dictate when/if
the EnvironmentParameters must change.
:param init_path: Path from which to load model.
:param multi_gpu: If True, multi-gpu will be used. (currently not available)
"""
self.trainer_config = trainer_config
self.output_path = output_path
self.init_path = init_path
self.train_model = train_model
self.load_model = load_model
self.seed = seed
self.param_manager = param_manager
self.multi_gpu = multi_gpu
self.ghost_controller = GhostController()
def generate(self, behavior_name: str) -> Trainer:
trainer_settings = self.trainer_config[behavior_name]
return TrainerFactory._initialize_trainer(
trainer_settings,
behavior_name,
self.output_path,
self.train_model,
self.load_model,
self.ghost_controller,
self.seed,
self.param_manager,
self.init_path,
self.multi_gpu,
)
@staticmethod
def _initialize_trainer(
trainer_settings: TrainerSettings,
brain_name: str,
output_path: str,
train_model: bool,
load_model: bool,
ghost_controller: GhostController,
seed: int,
param_manager: EnvironmentParameterManager,
init_path: str = None,
multi_gpu: bool = False,
) -> Trainer:
"""
Initializes a trainer given a provided trainer configuration and brain parameters, as well as
some general training session options.
:param trainer_settings: Original trainer configuration loaded from YAML
:param brain_name: Name of the brain to be associated with trainer
:param output_path: Path to save the model and summary statistics
:param keep_checkpoints: How many model checkpoints to keep
:param train_model: Whether to train the model (vs. run inference)
:param load_model: Whether to load the model or randomly initialize
:param ghost_controller: The object that coordinates ghost trainers
:param seed: The random seed to use
:param param_manager: EnvironmentParameterManager, used to determine a reward buffer length for PPOTrainer
:param init_path: Path from which to load model, if different from model_path.
:return:
"""
trainer_artifact_path = os.path.join(output_path, brain_name)
if init_path is not None:
trainer_settings.init_path = os.path.join(init_path, brain_name)
min_lesson_length = param_manager.get_minimum_reward_buffer_size(brain_name)
trainer: Trainer = None # type: ignore # will be set to one of these, or raise
trainer_type = trainer_settings.trainer_type
if trainer_type == TrainerType.PPO:
trainer = PPOTrainer(
brain_name,
min_lesson_length,
trainer_settings,
train_model,
load_model,
seed,
trainer_artifact_path,
)
elif trainer_type == TrainerType.POCA:
trainer = POCATrainer(
brain_name,
min_lesson_length,
trainer_settings,
train_model,
load_model,
seed,
trainer_artifact_path,
)
elif trainer_type == TrainerType.SAC:
trainer = SACTrainer(
brain_name,
min_lesson_length,
trainer_settings,
train_model,
load_model,
seed,
trainer_artifact_path,
)
else:
raise TrainerConfigError(
f'The trainer config contains an unknown trainer type "{trainer_type}" for brain {brain_name}'
)
if trainer_settings.self_play is not None:
trainer = GhostTrainer(
trainer,
brain_name,
ghost_controller,
min_lesson_length,
trainer_settings,
train_model,
trainer_artifact_path,
)
return trainer