Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

130 行
4.6 KiB

from abc import ABC, abstractmethod
from typing import List, Dict, NamedTuple, Iterable, Tuple
from mlagents_envs.base_env import (
DecisionSteps,
TerminalSteps,
BehaviorSpec,
BehaviorName,
)
from mlagents_envs.side_channel.stats_side_channel import StatsAggregationMethod
from mlagents.trainers.brain import BrainParameters
from mlagents.trainers.policy.tf_policy import TFPolicy
from mlagents.trainers.agent_processor import AgentManager, AgentManagerQueue
from mlagents.trainers.action_info import ActionInfo
from mlagents_envs.logging_util import get_logger
AllStepResult = Dict[BehaviorName, Tuple[DecisionSteps, TerminalSteps]]
AllGroupSpec = Dict[BehaviorName, BehaviorSpec]
logger = get_logger(__name__)
class EnvironmentStep(NamedTuple):
current_all_step_result: AllStepResult
worker_id: int
brain_name_to_action_info: Dict[BehaviorName, ActionInfo]
environment_stats: Dict[str, Tuple[float, StatsAggregationMethod]]
@property
def name_behavior_ids(self) -> Iterable[BehaviorName]:
return self.current_all_step_result.keys()
@staticmethod
def empty(worker_id: int) -> "EnvironmentStep":
return EnvironmentStep({}, worker_id, {}, {})
class EnvManager(ABC):
def __init__(self):
self.policies: Dict[BehaviorName, TFPolicy] = {}
self.agent_managers: Dict[BehaviorName, AgentManager] = {}
self.first_step_infos: List[EnvironmentStep] = None
def set_policy(self, brain_name: BehaviorName, policy: TFPolicy) -> None:
self.policies[brain_name] = policy
if brain_name in self.agent_managers:
self.agent_managers[brain_name].policy = policy
def set_agent_manager(
self, brain_name: BehaviorName, manager: AgentManager
) -> None:
self.agent_managers[brain_name] = manager
@abstractmethod
def _step(self) -> List[EnvironmentStep]:
pass
@abstractmethod
def _reset_env(self, config: Dict = None) -> List[EnvironmentStep]:
pass
def reset(self, config: Dict = None) -> int:
for manager in self.agent_managers.values():
manager.end_episode()
# Save the first step infos, after the reset.
# They will be processed on the first advance().
self.first_step_infos = self._reset_env(config)
return len(self.first_step_infos)
@property
@abstractmethod
def external_brains(self) -> Dict[BehaviorName, BrainParameters]:
pass
@property
@abstractmethod
def get_properties(self) -> Dict[BehaviorName, float]:
pass
@abstractmethod
def close(self):
pass
def advance(self):
# If we had just reset, process the first EnvironmentSteps.
# Note that we do it here instead of in reset() so that on the very first reset(),
# we can create the needed AgentManagers before calling advance() and processing the EnvironmentSteps.
if self.first_step_infos is not None:
self._process_step_infos(self.first_step_infos)
self.first_step_infos = None
# Get new policies if found
for brain_name in self.external_brains:
try:
_policy = self.agent_managers[brain_name].policy_queue.get_nowait()
self.set_policy(brain_name, _policy)
except AgentManagerQueue.Empty:
pass
# Step the environment
new_step_infos = self._step()
# Add to AgentProcessor
num_step_infos = self._process_step_infos(new_step_infos)
return num_step_infos
def _process_step_infos(self, step_infos: List[EnvironmentStep]) -> int:
for step_info in step_infos:
for name_behavior_id in step_info.name_behavior_ids:
if name_behavior_id not in self.agent_managers:
logger.warning(
"Agent manager was not created for behavior id {}.".format(
name_behavior_id
)
)
continue
decision_steps, terminal_steps = step_info.current_all_step_result[
name_behavior_id
]
self.agent_managers[name_behavior_id].add_experiences(
decision_steps,
terminal_steps,
step_info.worker_id,
step_info.brain_name_to_action_info.get(
name_behavior_id, ActionInfo.empty()
),
)
self.agent_managers[name_behavior_id].record_environment_stats(
step_info.environment_stats, step_info.worker_id
)
return len(step_infos)