Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
 
 
 
 
 

57 行
2.5 KiB

# @generated by generate_proto_mypy_stubs.py. Do not edit!
import sys
from google.protobuf.descriptor import (
Descriptor as google___protobuf___descriptor___Descriptor,
)
from google.protobuf.message import (
Message as google___protobuf___message___Message,
)
from mlagents_envs.communicator_objects.unity_rl_initialization_output_pb2 import (
UnityRLInitializationOutputProto as mlagents_envs___communicator_objects___unity_rl_initialization_output_pb2___UnityRLInitializationOutputProto,
)
from mlagents_envs.communicator_objects.unity_rl_output_pb2 import (
UnityRLOutputProto as mlagents_envs___communicator_objects___unity_rl_output_pb2___UnityRLOutputProto,
)
from typing import (
Optional as typing___Optional,
)
from typing_extensions import (
Literal as typing_extensions___Literal,
)
builtin___bool = bool
builtin___bytes = bytes
builtin___float = float
builtin___int = int
class UnityOutputProto(google___protobuf___message___Message):
DESCRIPTOR: google___protobuf___descriptor___Descriptor = ...
@property
def rl_output(self) -> mlagents_envs___communicator_objects___unity_rl_output_pb2___UnityRLOutputProto: ...
@property
def rl_initialization_output(self) -> mlagents_envs___communicator_objects___unity_rl_initialization_output_pb2___UnityRLInitializationOutputProto: ...
def __init__(self,
*,
rl_output : typing___Optional[mlagents_envs___communicator_objects___unity_rl_output_pb2___UnityRLOutputProto] = None,
rl_initialization_output : typing___Optional[mlagents_envs___communicator_objects___unity_rl_initialization_output_pb2___UnityRLInitializationOutputProto] = None,
) -> None: ...
@classmethod
def FromString(cls, s: builtin___bytes) -> UnityOutputProto: ...
def MergeFrom(self, other_msg: google___protobuf___message___Message) -> None: ...
def CopyFrom(self, other_msg: google___protobuf___message___Message) -> None: ...
if sys.version_info >= (3,):
def HasField(self, field_name: typing_extensions___Literal[u"rl_initialization_output",u"rl_output"]) -> builtin___bool: ...
def ClearField(self, field_name: typing_extensions___Literal[u"rl_initialization_output",u"rl_output"]) -> None: ...
else:
def HasField(self, field_name: typing_extensions___Literal[u"rl_initialization_output",b"rl_initialization_output",u"rl_output",b"rl_output"]) -> builtin___bool: ...
def ClearField(self, field_name: typing_extensions___Literal[u"rl_initialization_output",b"rl_initialization_output",u"rl_output",b"rl_output"]) -> None: ...