您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
60 行
1.7 KiB
60 行
1.7 KiB
from abc import ABC, abstractmethod
|
|
from typing import List, Dict, NamedTuple, Iterable
|
|
from mlagents_envs.base_env import BatchedStepResult, AgentGroupSpec, AgentGroup
|
|
from mlagents.trainers.brain import BrainParameters
|
|
from mlagents.trainers.policy import Policy
|
|
from mlagents.trainers.action_info import ActionInfo
|
|
|
|
AllStepResult = Dict[AgentGroup, BatchedStepResult]
|
|
AllGroupSpec = Dict[AgentGroup, AgentGroupSpec]
|
|
|
|
|
|
def get_global_agent_id(worker_id: int, agent_id: int) -> str:
|
|
"""
|
|
Create an agent id that is unique across environment workers using the worker_id.
|
|
"""
|
|
return f"${worker_id}-{agent_id}"
|
|
|
|
|
|
class EnvironmentStep(NamedTuple):
|
|
current_all_step_result: AllStepResult
|
|
worker_id: int
|
|
brain_name_to_action_info: Dict[AgentGroup, ActionInfo]
|
|
|
|
@property
|
|
def name_behavior_ids(self) -> Iterable[AgentGroup]:
|
|
return self.current_all_step_result.keys()
|
|
|
|
@staticmethod
|
|
def empty(worker_id: int) -> "EnvironmentStep":
|
|
return EnvironmentStep({}, worker_id, {})
|
|
|
|
|
|
class EnvManager(ABC):
|
|
def __init__(self):
|
|
self.policies: Dict[AgentGroup, Policy] = {}
|
|
|
|
def set_policy(self, brain_name: AgentGroup, policy: Policy) -> None:
|
|
self.policies[brain_name] = policy
|
|
|
|
@abstractmethod
|
|
def step(self) -> List[EnvironmentStep]:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def reset(self, config: Dict = None) -> List[EnvironmentStep]:
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def external_brains(self) -> Dict[AgentGroup, BrainParameters]:
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def get_properties(self) -> Dict[AgentGroup, float]:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def close(self):
|
|
pass
|