Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

303 行
12 KiB

# # Unity ML Agents
# ## ML-Agent Learning (Imitation)
# Contains an implementation of Imitation Learning
import logging
import os
import numpy as np
import tensorflow as tf
from trainers.buffer import Buffer
from trainers.ppo_models import *
from trainers.trainer import UnityTrainerException, Trainer
logger = logging.getLogger("unityagents")
class ImitationNN(object):
def __init__(self, state_size, action_size, h_size, lr, action_type, n_layers):
self.state = tf.placeholder(shape=[None, state_size], dtype=tf.float32, name="state")
hidden = tf.layers.dense(self.state, h_size, activation=tf.nn.elu)
for i in range(n_layers):
hidden = tf.layers.dense(hidden, h_size, activation=tf.nn.elu)
hidden_drop = tf.layers.dropout(hidden, 0.5)
self.output = tf.layers.dense(hidden_drop, action_size, activation=None)
if action_type == "discrete":
self.action_probs = tf.nn.softmax(self.output)
self.sample_action = tf.multinomial(self.output, 1, name="action")
self.true_action = tf.placeholder(shape=[None], dtype=tf.int32)
self.action_oh = tf.one_hot(self.true_action, action_size)
self.loss = tf.reduce_sum(-tf.log(self.action_probs + 1e-10) * self.action_oh)
self.action_percent = tf.reduce_mean(tf.cast(
tf.equal(tf.cast(tf.argmax(self.action_probs, axis=1), tf.int32), self.sample_action), tf.float32))
else:
self.sample_action = tf.identity(self.output, name="action")
self.true_action = tf.placeholder(shape=[None, action_size], dtype=tf.float32)
self.loss = tf.reduce_sum(tf.squared_difference(self.true_action, self.sample_action))
optimizer = tf.train.AdamOptimizer(learning_rate=lr)
self.update = optimizer.minimize(self.loss)
class ImitationTrainer(Trainer):
"""The ImitationTrainer is an implementation of the imitation learning."""
def __init__(self, sess, env, brain_name, trainer_parameters, training):
"""
Responsible for collecting experiences and training PPO model.
:param sess: Tensorflow session.
:param env: The UnityEnvironment.
:param trainer_parameters: The parameters for the trainer (dictionary).
:param training: Whether the trainer is set for training.
"""
self.param_keys = [ 'is_imitation', 'brain_to_imitate', 'batch_size', 'time_horizon', 'graph_scope',
'summary_freq', 'max_steps', 'batches_per_epoch']
for k in self.param_keys:
if k not in trainer_parameters:
raise UnityTrainerException("The hyperparameter {0} could not be found for the Imitation trainer of "
"brain {1}.".format(k, brain_name))
super(ImitationTrainer, self).__init__(sess, env, brain_name, trainer_parameters, training)
self.variable_scope = trainer_parameters['graph_scope']
self.brain_to_imitate = trainer_parameters['brain_to_imitate']
self.batch_size = trainer_parameters['batch_size']
self.batches_per_epoch = trainer_parameters['batches_per_epoch']
self.step = 0
self.cumulative_rewards = {}
self.episode_steps = {}
self.stats = {'losses': [], 'episode_length': [], 'cumulative_reward' : []}
self.training_buffer = Buffer()
self.is_continuous = (env.brains[brain_name].action_space_type == "continuous")
self.use_observations = (env.brains[brain_name].number_observations > 0)
if self.use_observations:
logger.log('Cannot use observations with imitation learning')
self.use_states = (env.brains[brain_name].state_space_size > 0)
self.summary_path = trainer_parameters['summary_path']
if not os.path.exists(self.summary_path):
os.makedirs(self.summary_path)
self.summary_writer = tf.summary.FileWriter(self.summary_path)
s_size = self.brain.state_space_size * self.brain.stacked_states
a_size = self.brain.action_space_size
with tf.variable_scope(self.variable_scope):
self.network = ImitationNN(state_size = s_size,
action_size = a_size,
h_size = int(trainer_parameters['hidden_units']),
lr = float(trainer_parameters['learning_rate']),
action_type = self.brain.action_space_type,
n_layers=int(trainer_parameters['num_layers']))
def __str__(self):
return '''Hypermarameters for the Imitation Trainer of brain {0}: \n{1}'''.format(
self.brain_name, '\n'.join(['\t{0}:\t{1}'.format(x, self.trainer_parameters[x]) for x in self.param_keys]))
@property
def parameters(self):
"""
Returns the trainer parameters of the trainer.
"""
return self.trainer_parameters
@property
def graph_scope(self):
"""
Returns the graph scope of the trainer.
"""
return self.variable_scope
@property
def get_max_steps(self):
"""
Returns the maximum number of steps. Is used to know when the trainer should be stopped.
:return: The maximum number of steps of the trainer
"""
return float(self.trainer_parameters['max_steps'])
@property
def get_step(self):
"""
Returns the number of steps the trainer has performed
:return: the step count of the trainer
"""
return self.step
@property
def get_last_reward(self):
"""
Returns the last reward the trainer has had
:return: the new last reward
"""
if len(self.stats['cumulative_reward']) > 0:
return np.mean(self.stats['cumulative_reward'])
else:
return 0
def increment_step(self):
"""
Increment the step count of the trainer
"""
self.step += 1
def update_last_reward(self):
"""
Updates the last reward
"""
return
def take_action(self, info):
"""
Decides actions given state/observation information, and takes them in environment.
:param info: Current BrainInfo from environment.
:return: a tupple containing action, memories, values and an object
to be passed to add experiences
"""
E = info[self.brain_name]
agent_action = self.sess.run(self.network.sample_action, feed_dict={self.network.state: E.states})
return (agent_action, None, None, None)
def add_experiences(self, info, next_info, take_action_outputs):
"""
Adds experiences to each agent's experience history.
:param info: Current BrainInfo.
:param next_info: Next BrainInfo.
:param take_action_outputs: The outputs of the take action method.
"""
info_P = info[self.brain_to_imitate]
next_info_P = next_info[self.brain_to_imitate]
for agent_id in info_P.agents:
if agent_id in next_info_P.agents:
idx = info_P.agents.index(agent_id)
next_idx = next_info_P.agents.index(agent_id)
if not info_P.local_done[idx]:
self.training_buffer[agent_id]['states'].append(info_P.states[idx])
self.training_buffer[agent_id]['actions'].append(next_info_P.previous_actions[next_idx])
# self.training_buffer[agent_id]['rewards'].append(next_info.rewards[next_idx])
info_E = next_info[self.brain_name]
next_info_E = next_info[self.brain_name]
for agent_id in info_E.agents:
idx = info_E.agents.index(agent_id)
next_idx = next_info_E.agents.index(agent_id)
if not info_E.local_done[idx]:
if agent_id not in self.cumulative_rewards:
self.cumulative_rewards[agent_id] = 0
self.cumulative_rewards[agent_id] += next_info_E.rewards[next_idx]
if agent_id not in self.episode_steps:
self.episode_steps[agent_id] = 0
self.episode_steps[agent_id] += 1
def process_experiences(self, info):
"""
Checks agent histories for processing condition, and processes them as necessary.
Processing involves calculating value and advantage targets for model updating step.
:param info: Current BrainInfo
"""
info_P = info[self.brain_to_imitate]
for l in range(len(info_P.agents)):
if ((info_P.local_done[l] or
len(self.training_buffer[info_P.agents[l]]['actions']) > self.trainer_parameters['time_horizon'])
and len(self.training_buffer[info_P.agents[l]]['actions']) > 0):
agent_id = info_P.agents[l]
self.training_buffer.append_update_buffer(agent_id,
batch_size = None, training_length=None)
self.training_buffer[agent_id].reset_agent()
info_E = info[self.brain_name]
for l in range(len(info_E.agents)):
if info_E.local_done[l]:
agent_id = info_E.agents[l]
self.stats['cumulative_reward'].append(self.cumulative_rewards[agent_id])
self.stats['episode_length'].append(self.episode_steps[agent_id])
self.cumulative_rewards[agent_id] = 0
self.episode_steps[agent_id] = 0
def end_episode(self):
"""
A signal that the Episode has ended. The buffer must be reset.
Get only called when the academy resets.
"""
self.training_buffer.reset_all()
for agent_id in self.cumulative_rewards:
self.cumulative_rewards[agent_id] = 0
for agent_id in self.episode_steps:
self.episode_steps[agent_id] = 0
def is_ready_update(self):
"""
Returns wether or not the trainer has enough elements to run update model
:return: A boolean corresponding to wether or not update_model() can be run
"""
return len(self.training_buffer.update_buffer['actions']) > self.batch_size
def update_model(self):
"""
Uses training_buffer to update model.
"""
batch_size = self.trainer_parameters['batch_size']
self.training_buffer.update_buffer.shuffle()
batch_losses = []
for j in range(min(len(self.training_buffer.update_buffer['actions']) // self.batch_size, self.batches_per_epoch)):
_buffer = self.training_buffer.update_buffer
batch_states = np.array(_buffer['states'][j * batch_size:(j + 1) * batch_size])
batch_actions = np.array(_buffer['actions'][j * batch_size:(j + 1) * batch_size])
if not self.is_continuous:
feed_dict = {
self.network.state: batch_states.reshape([-1, 1]),
self.network.true_action: np.reshape(batch_actions, -1)
}
else:
feed_dict = {
self.network.state: batch_states.reshape([self.batch_size, -1]),
self.network.true_action: batch_actions.reshape([self.batch_size, -1])
}
loss, _ = self.sess.run([self.network.loss, self.network.update], feed_dict=feed_dict)
batch_losses.append(loss)
if len(batch_losses) > 0:
self.stats['losses'].append(np.mean(batch_losses))
else:
self.stats['losses'].append(0)
def write_summary(self, lesson_number):
"""
Saves training statistics to Tensorboard.
:param lesson_number: The lesson the trainer is at.
"""
if (self.get_step % self.trainer_parameters['summary_freq'] == 0 and self.get_step != 0 and
self.is_training and self.get_step <= self.get_max_steps):
steps = self.get_step
if len(self.stats['cumulative_reward']) > 0:
mean_reward = np.mean(self.stats['cumulative_reward'])
logger.info("{0} : Step: {1}. Mean Reward: {2}. Std of Reward: {3}."
.format(self.brain_name, steps, mean_reward, np.std(self.stats['cumulative_reward'])))
summary = tf.Summary()
for key in self.stats:
if len(self.stats[key]) > 0:
stat_mean = float(np.mean(self.stats[key]))
summary.value.add(tag='Info/{}'.format(key), simple_value=stat_mean)
self.stats[key] = []
summary.value.add(tag='Info/Lesson', simple_value=lesson_number)
self.summary_writer.add_summary(summary, steps)
self.summary_writer.flush()