Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

226 行
11 KiB

# # Unity ML Agents
# ## ML-Agent Learning (PPO)
# Launches trainers for each External Brains in a Unity Environemnt
import logging
import os
import re
import yaml
from docopt import docopt
from trainers.ghost_trainer import GhostTrainer
from trainers.ppo_models import *
from trainers.ppo_trainer import PPOTrainer
from trainers.imitation_trainer import ImitationTrainer
from unityagents import UnityEnvironment, UnityEnvironmentException
def get_progress():
if curriculum_file is not None:
if env.curriculum.measure_type == "progress":
progress = 0
for brain_name in env.external_brain_names:
progress += trainers[brain_name].get_step / trainers[brain_name].get_max_steps
return progress / len(env.external_brain_names)
elif env.curriculum.measure_type == "reward":
progress = 0
for brain_name in env.external_brain_names:
progress += trainers[brain_name].get_last_reward
return progress
else:
return None
else:
return None
if __name__ == '__main__':
logger = logging.getLogger("unityagents")
_USAGE = '''
Usage:
ppo (<env>) [options]
Options:
--help Show this message.
--curriculum=<file> Curriculum json file for environment [default: None].
--slow Whether to run the game at training speed [default: False].
--keep-checkpoints=<n> How many model checkpoints to keep [default: 5].
--lesson=<n> Start learning from this lesson [default: 0].
--load Whether to load the model or randomly initialize [default: False].
--run-path=<path> The sub-directory name for model and summary statistics [default: ppo].
--save-freq=<n> Frequency at which to save model [default: 50000].
--train Whether to train model, or only run inference [default: False].
--worker-id=<n> Number to add to communication port (5005). Used for multi-environment [default: 0].
'''
options = docopt(_USAGE)
logger.info(options)
# General parameters
model_path = './models/{}'.format(str(options['--run-path']))
load_model = options['--load']
train_model = options['--train']
save_freq = int(options['--save-freq'])
env_name = options['<env>']
keep_checkpoints = int(options['--keep-checkpoints'])
worker_id = int(options['--worker-id'])
curriculum_file = str(options['--curriculum'])
if curriculum_file == "None":
curriculum_file = None
lesson = int(options['--lesson'])
fast_simulation = not bool(options['--slow'])
env = UnityEnvironment(file_name=env_name, worker_id=worker_id, curriculum=curriculum_file)
env.curriculum.set_lesson_number(lesson)
logger.info(str(env))
tf.reset_default_graph()
try:
if not os.path.exists(model_path):
os.makedirs(model_path)
except:
raise UnityEnvironmentException("The folder {} containing the generated model could not be accessed."
" Please make sure the permissions are set correctly.".format(model_path))
try:
with open("trainer_configurations.yaml") as data_file:
trainer_configurations = yaml.load(data_file)
except IOError:
raise UnityEnvironmentException("The file {} could not be found. Will use default Hyperparameters"
.format("trainer_configurations.yaml"))
except UnicodeDecodeError:
raise UnityEnvironmentException("There was an error decoding {}".format("trainer_configurations.yaml"))
with tf.Session() as sess:
trainers = {}
trainer_parameters_dict = {}
for brain_name in env.external_brain_names:
trainer_parameters = trainer_configurations['default'].copy()
if len(env.external_brain_names) > 1:
graph_scope = re.sub('[^0-9a-zA-Z]+', '-', brain_name)
trainer_parameters['graph_scope'] = graph_scope
trainer_parameters['summary_path'] = './summaries/{}'.format(
str(options['--run-path'])) + '_' + graph_scope
else:
trainer_parameters['graph_scope'] = ''
trainer_parameters['summary_path'] = './summaries/{}'.format(str(options['--run-path']))
if brain_name in trainer_configurations:
_brain_key = brain_name
while not isinstance(trainer_configurations[_brain_key], dict):
_brain_key = trainer_configurations[_brain_key]
for k in trainer_configurations[_brain_key]:
trainer_parameters[k] = trainer_configurations[_brain_key][k]
trainer_parameters_dict[brain_name] = trainer_parameters.copy()
for brain_name in env.external_brain_names:
if 'is_ghost' not in trainer_parameters_dict[brain_name]:
trainer_parameters_dict[brain_name]['is_ghost'] = False
if 'is_imitation' not in trainer_parameters_dict[brain_name]:
trainer_parameters_dict[brain_name]['is_imitation'] = False
if trainer_parameters_dict[brain_name]['is_ghost']:
if trainer_parameters_dict[brain_name]['brain_to_copy'] not in env.external_brain_names:
raise UnityEnvironmentException("The external brain {0} could not be found in the environment "
"even though the ghost trainer of brain {1} is trying to ghost it."
.format(trainer_parameters_dict[brain_name]['brain_to_copy'],
brain_name))
trainer_parameters_dict[brain_name]['original_brain_parameters'] = trainer_parameters_dict[
trainer_parameters_dict[brain_name]['brain_to_copy']]
trainers[brain_name] = GhostTrainer(sess, env, brain_name, trainer_parameters_dict[brain_name],
train_model)
elif trainer_parameters_dict[brain_name]['is_imitation']:
trainers[brain_name] = ImitationTrainer(sess, env, brain_name, trainer_parameters_dict[brain_name],
train_model)
else:
trainers[brain_name] = PPOTrainer(sess, env, brain_name, trainer_parameters_dict[brain_name],
train_model)
for k, t in trainers.items():
logger.info(t)
init = tf.global_variables_initializer()
saver = tf.train.Saver(max_to_keep=keep_checkpoints)
# Instantiate model parameters
if load_model:
logger.info('Loading Model...')
ckpt = tf.train.get_checkpoint_state(model_path)
if ckpt is None:
logger.info('The model {0} could not be found. Make sure you specified the right '
'--run-path'.format(model_path))
saver.restore(sess, ckpt.model_checkpoint_path)
else:
sess.run(init)
global_step = 0 # This is only for saving the model
env.curriculum.increment_lesson(get_progress())
info = env.reset(train_mode=fast_simulation)
if train_model:
for brain_name, trainer in trainers.items():
trainer.write_tensorboard_text('Hyperparameters', trainer.parameters)
try:
while any([t.get_step <= t.get_max_steps for k, t in trainers.items()]) or not train_model:
if env.global_done:
env.curriculum.increment_lesson(get_progress())
info = env.reset(train_mode=fast_simulation)
for brain_name, trainer in trainers.items():
trainer.end_episode()
# Decide and take an action
take_action_actions, take_action_memories, take_action_values, take_action_outputs = {}, {}, {}, {}
for brain_name, trainer in trainers.items():
(take_action_actions[brain_name],
take_action_memories[brain_name],
take_action_values[brain_name],
take_action_outputs[brain_name]) = trainer.take_action(info)
new_info = env.step(action=take_action_actions, memory=take_action_memories, value=take_action_values)
for brain_name, trainer in trainers.items():
trainer.add_experiences(info, new_info, take_action_outputs[brain_name])
info = new_info
for brain_name, trainer in trainers.items():
trainer.process_experiences(info)
if trainer.is_ready_update() and train_model and trainer.get_step <= trainer.get_max_steps:
# Perform gradient descent with experience buffer
trainer.update_model()
# Write training statistics to tensorboard.
trainer.write_summary(env.curriculum.lesson_number)
if train_model and trainer.get_step <= trainer.get_max_steps:
trainer.increment_step()
trainer.update_last_reward()
if train_model and trainer.get_step <= trainer.get_max_steps:
global_step += 1
if global_step % save_freq == 0 and global_step != 0 and train_model:
# Save Tensorflow model
save_model(sess, model_path=model_path, steps=global_step, saver=saver)
# Final save Tensorflow model
if global_step != 0 and train_model:
save_model(sess, model_path=model_path, steps=global_step, saver=saver)
except KeyboardInterrupt:
if train_model:
logger.info("Learning was interrupted. Please wait while the graph is generated.")
save_model(sess, model_path=model_path, steps=global_step, saver=saver)
pass
env.close()
if train_model:
graph_name = (env_name.strip()
.replace('.app', '').replace('.exe', '').replace('.x86_64', '').replace('.x86', ''))
graph_name = os.path.basename(os.path.normpath(graph_name))
nodes = []
scopes = []
for brain_name in trainers.keys():
if trainers[brain_name].graph_scope is not None:
scope = trainers[brain_name].graph_scope + '/'
if scope == '/':
scope = ''
scopes += [scope]
if trainers[brain_name].parameters["is_imitation"]:
nodes += [scope + x for x in ["action"]]
elif not trainers[brain_name].parameters["use_recurrent"]:
nodes += [scope + x for x in ["action", "value_estimate", "action_probs"]]
else:
nodes += [scope + x for x in ["action", "value_estimate", "action_probs", "recurrent_out"]]
export_graph(model_path, graph_name, target_nodes=','.join(nodes))
if len(scopes) > 1:
logger.info("List of available scopes :")
for scope in scopes:
logger.info("\t" + scope)
logger.info("List of nodes exported :")
for n in nodes:
logger.info("\t" + n)