Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

15 KiB

Unity ML-Agents Python Low Level API

The mlagents Python package contains two components: a low level API which allows you to interact directly with a Unity Environment (mlagents_envs) and an entry point to train (mlagents-learn) which allows you to train agents in Unity Environments using our implementations of reinforcement learning or imitation learning. This document describes how to use the mlagents_envs API. For information on using mlagents-learn, see here.

The Python Low Level API can be used to interact directly with your Unity learning environment. As such, it can serve as the basis for developing and evaluating new learning algorithms.

mlagents_envs

The ML-Agents Toolkit Low Level API is a Python API for controlling the simulation loop of an environment or game built with Unity. This API is used by the training algorithms inside the ML-Agent Toolkit, but you can also write your own Python programs using this API. Go here for a Jupyter Notebook walking through the functionality of the API.

The key objects in the Python API include:

  • UnityEnvironment — the main interface between the Unity application and your code. Use UnityEnvironment to start and control a simulation or training session.
  • BatchedStepResult — contains the data from Agents belonging to the same "AgentGroup" in the simulation, such as observations and rewards.
  • AgentGroupSpec — describes the shape of the data inside a BatchedStepResult. For example, provides the dimensions of the observations of a group.

These classes are all defined in the base_env script.

An Agent Group is a group of Agents identified by a string name that share the same observations and action types. You can think about Agent Group as a group of agents that will share the same policy or behavior. All Agents in a group have the same goal and reward signals.

To communicate with an Agent in a Unity environment from a Python program, the Agent in the simulation must have Behavior Parameters set to communicate. You must set the Behavior Type to Default and give it a Behavior Name.

Note: The Behavior Name corresponds to the Agent Group name on Python.

Notice: Currently communication between Unity and Python takes place over an open socket without authentication. As such, please make sure that the network where training takes place is secure. This will be addressed in a future release.

Loading a Unity Environment

Python-side communication happens through UnityEnvironment which is located in environment.py. To load a Unity environment from a built binary file, put the file in the same directory as envs. For example, if the filename of your Unity environment is 3DBall, in python, run:

from mlagents_envs.environment import UnityEnvironment
env = UnityEnvironment(file_name="3DBall", base_port=5005, seed=1, side_channels=[])
  • file_name is the name of the environment binary (located in the root directory of the python project).
  • worker_id indicates which port to use for communication with the environment. For use in parallel training regimes such as A3C.
  • seed indicates the seed to use when generating random numbers during the training process. In environments which do not involve physics calculations, setting the seed enables reproducible experimentation by ensuring that the environment and trainers utilize the same random seed.
  • side_channels provides a way to exchange data with the Unity simulation that is not related to the reinforcement learning loop. For example: configurations or properties. More on them in the Modifying the environment from Python section.

If you want to directly interact with the Editor, you need to use file_name=None, then press the ▶️ button in the Editor when the message "Start training by pressing the Play button in the Unity Editor" is displayed on the screen

Interacting with a Unity Environment

The BaseEnv interface

A BaseEnv has the following methods:

  • Reset : env.reset() Sends a signal to reset the environment. Returns None.
  • Step : env.step() Sends a signal to step the environment. Returns None. Note that a "step" for Python does not correspond to either Unity Update nor FixedUpdate. When step() or reset() is called, the Unity simulation will move forward until an Agent in the simulation needs a input from Python to act.
  • Close : env.close() Sends a shutdown signal to the environment and terminates the communication.
  • Get Agent Group Names : env.get_agent_groups() Returns a list of agent group ids. Note that the number of groups can change over time in the simulation if new agent groups are created in the simulation.
  • Get Agent Group Spec : env.get_agent_group_spec(agent_group: str) Returns the AgentGroupSpec corresponding to the agent_group given as input. An AgentGroupSpec contains information such as the observation shapes, the action type (multi-discrete or continuous) and the action shape. Note that the AgentGroupSpec for a specific group is fixed throughout the simulation.
  • Get Batched Step Result for Agent Group : env.get_step_result(agent_group: str) Returns a BatchedStepResult corresponding to the agent_group given as input. A BatchedStepResult contains information about the state of the agents in a group such as the observations, the rewards, the done flags and the agent identifiers. The data is in np.array of which the first dimension is always the number of agents which requested a decision in the simulation since the last call to env.step() note that the number of agents is not guaranteed to remain constant during the simulation.
  • Set Actions for Agent Group :env.set_actions(agent_group: str, action: np.array) Sets the actions for a whole agent group. action is a 2D np.array of dtype=np.int32 in the discrete action case and dtype=np.float32 in the continuous action case. The first dimension of action is the number of agents that requested a decision since the last call to env.step(). The second dimension is the number of discrete actions in multi-discrete action type and the number of actions in continuous action type.
  • Set Action for Agent : env.set_action_for_agent(agent_group: str, agent_id: int, action: np.array) Sets the action for a specific Agent in an agent group. agent_group is the name of the group the Agent belongs to and agent_id is the integer identifier of the Agent. Action is a 1D array of type dtype=np.int32 and size equal to the number of discrete actions in multi-discrete action type and of type dtype=np.float32 and size equal to the number of actions in continuous action type.

Note: If no action is provided for an agent group between two calls to env.step() then the default action will be all zeros (in either discrete or continuous action space)

BathedStepResult and StepResult

A BatchedStepResult has the following fields :

  • obs is a list of numpy arrays observations collected by the group of agent. The first dimension of the array corresponds to the batch size of the group (number of agents requesting a decision since the last call to env.step()).
  • reward is a float vector of length batch size. Corresponds to the rewards collected by each agent since the last simulation step.
  • done is an array of booleans of length batch size. Is true if the associated Agent was terminated during the last simulation step.
  • max_step is an array of booleans of length batch size. Is true if the associated Agent reached its maximum number of steps during the last simulation step.
  • agent_id is an int vector of length batch size containing unique identifier for the corresponding Agent. This is used to track Agents across simulation steps.
  • action_mask is an optional list of two dimensional array of booleans. Only available in multi-discrete action space type. Each array corresponds to an action branch. The first dimension of each array is the batch size and the second contains a mask for each action of the branch. If true, the action is not available for the agent during this simulation step.

It also has the two following methods:

  • n_agents() Returns the number of agents requesting a decision since the last call to env.step()
  • get_agent_step_result(agent_id: int) Returns a StepResult for the Agent with the agent_id unique identifier.

A StepResult has the following fields:

  • obs is a list of numpy arrays observations collected by the group of agent. (Each array has one less dimension than the arrays in BatchedStepResult)
  • reward is a float. Corresponds to the rewards collected by the agent since the last simulation step.
  • done is a bool. Is true if the Agent was terminated during the last simulation step.
  • max_step is a bool. Is true if the Agent reached its maximum number of steps during the last simulation step.
  • agent_id is an int and an unique identifier for the corresponding Agent.
  • action_mask is an optional list of one dimensional array of booleans. Only available in multi-discrete action space type. Each array corresponds to an action branch. Each array contains a mask for each action of the branch. If true, the action is not available for the agent during this simulation step.

AgentGroupSpec

An Agent group can either have discrete or continuous actions. To check which type it is, use spec.is_action_discrete() or spec.is_action_continuous() to see which one it is. If discrete, the action tensors are expected to be np.int32. If continuous, the actions are expected to be np.float32.

An AgentGroupSpec has the following fields :

  • observation_shapes is a List of Tuples of int : Each Tuple corresponds to an observation's dimensions (without the number of agents dimension). The shape tuples have the same ordering as the ordering of the BatchedStepResult and StepResult.
  • action_type is the type of data of the action. it can be discrete or continuous. If discrete, the action tensors are expected to be np.int32. If continuous, the actions are expected to be np.float32.
  • action_size is an int corresponding to the expected dimension of the action array.
    • In continuous action space it is the number of floats that constitute the action.
    • In discrete action space (same as multi-discrete) it corresponds to the number of branches (the number of independent actions)
  • discrete_action_branches is a Tuple of int only for discrete action space. Each int corresponds to the number of different options for each branch of the action. For example : In a game direction input (no movement, left, right) and jump input (no jump, jump) there will be two branches (direction and jump), the first one with 3 options and the second with 2 options. (action_size = 2 and discrete_action_branches = (3,2,))

Communicating additional information with the Environment

In addition to the means of communicating between Unity and python described above, we also provide methods for sharing agent-agnostic information. These additional methods are referred to as side channels. ML-Agents includes two ready-made side channels, described below. It is also possible to create custom side channels to communicate any additional data between a Unity environment and Python. Instructions for creating custom side channels can be found here.

Side channels exist as separate classes which are instantiated, and then passed as list to the side_channels argument of the constructor of the UnityEnvironment class.

channel = MyChannel()

env = UnityEnvironment(side_channels = [channel])

Note : A side channel will only send/receive messages when env.step or env.reset() is called.

EngineConfigurationChannel

The EngineConfiguration side channel allows you to modify the time-scale, resolution, and graphics quality of the environment. This can be useful for adjusting the environment to perform better during training, or be more interpretable during inference.

EngineConfigurationChannel has two methods :

  • set_configuration_parameters which takes the following arguments:
    • width: Defines the width of the display. Default 80.
    • height: Defines the height of the display. Default 80.
    • quality_level: Defines the quality level of the simulation. Default 1.
    • time_scale: Defines the multiplier for the deltatime in the simulation. If set to a higher value, time will pass faster in the simulation but the physics may perform unpredictably. Default 20.
    • target_frame_rate: Instructs simulation to try to render at a specified frame rate. Default -1.
  • set_configuration with argument config which is an EngineConfig NamedTuple object.

For example, the following code would adjust the time-scale of the simulation to be 2x realtime.

from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.side_channel.engine_configuration_channel import EngineConfigurationChannel

channel = EngineConfigurationChannel()

env = UnityEnvironment(base_port = UnityEnvironment.DEFAULT_EDITOR_PORT, side_channels = [channel])

channel.set_configuration_parameters(time_scale = 2.0)

i = env.reset()
...

FloatPropertiesChannel

The FloatPropertiesChannel will allow you to get and set pre-defined numerical values in the environment. This can be useful for adjusting environment-specific settings, or for reading non-agent related information from the environment. You can call get_property and set_property on the side channel to read and write properties.

FloatPropertiesChannel has three methods:

  • set_property Sets a property in the Unity Environment.

    • key: The string identifier of the property.
    • value: The float value of the property.
  • get_property Gets a property in the Unity Environment. If the property was not found, will return None.

    • key: The string identifier of the property.
  • list_properties Returns a list of all the string identifiers of the properties

from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.side_channel.float_properties_channel import FloatPropertiesChannel

channel = FloatPropertiesChannel()

env = UnityEnvironment(base_port = UnityEnvironment.DEFAULT_EDITOR_PORT, side_channels = [channel])

channel.set_property("parameter_1", 2.0)

i = env.reset()

readout_value = channel.get_property("parameter_2")
...

Once a property has been modified in Python, you can access it in C# after the next call to step as follows:

var sharedProperties = Academy.Instance.FloatProperties;
float property1 = sharedProperties.GetPropertyWithDefault("parameter_1", 0.0f);

Custom side channels

For information on how to make custom side channels for sending additional data types, see the documentation here.