Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

189 行
6.8 KiB

using System.Collections.Generic;
using Barracuda;
using NUnit.Framework;
using UnityEngine;
using MLAgents.InferenceBrain;
using System.Reflection;
namespace MLAgents.Tests
{
[TestFixture]
public class EditModeTestInternalBrainTensorGenerator
{
[SetUp]
public void SetUp()
{
if (Academy.IsInitialized)
{
Academy.Instance.Dispose();
}
}
static List<TestAgent> GetFakeAgents()
{
var goA = new GameObject("goA");
var bpA = goA.AddComponent<BehaviorParameters>();
bpA.brainParameters.vectorObservationSize = 3;
bpA.brainParameters.numStackedVectorObservations = 1;
var agentA = goA.AddComponent<TestAgent>();
var goB = new GameObject("goB");
var bpB = goB.AddComponent<BehaviorParameters>();
bpB.brainParameters.vectorObservationSize = 3;
bpB.brainParameters.numStackedVectorObservations = 1;
var agentB = goB.AddComponent<TestAgent>();
var agents = new List<TestAgent> { agentA, agentB };
foreach (var agent in agents)
{
var agentEnableMethod = typeof(Agent).GetMethod("OnEnableHelper",
BindingFlags.Instance | BindingFlags.NonPublic);
agentEnableMethod?.Invoke(agent, new object[] { });
}
agentA.collectObservationsSensor.AddObservation(new Vector3(1, 2, 3));
agentB.collectObservationsSensor.AddObservation(new Vector3(4, 5, 6));
var infoA = new AgentInfo
{
storedVectorActions = new[] { 1f, 2f },
actionMasks = null
};
var infoB = new AgentInfo
{
storedVectorActions = new[] { 3f, 4f },
actionMasks = new[] { true, false, false, false, false },
};
agentA._Info = infoA;
agentB._Info = infoB;
return agents;
}
[Test]
public void Construction()
{
var alloc = new TensorCachingAllocator();
var mem = new Dictionary<int, List<float>>();
var tensorGenerator = new TensorGenerator(0, alloc, mem);
Assert.IsNotNull(tensorGenerator);
alloc.Dispose();
}
[Test]
public void GenerateBatchSize()
{
var inputTensor = new TensorProxy();
var alloc = new TensorCachingAllocator();
const int batchSize = 4;
var generator = new BatchSizeGenerator(alloc);
generator.Generate(inputTensor, batchSize, null);
Assert.IsNotNull(inputTensor.data);
Assert.AreEqual(inputTensor.data[0], batchSize);
alloc.Dispose();
}
[Test]
public void GenerateSequenceLength()
{
var inputTensor = new TensorProxy();
var alloc = new TensorCachingAllocator();
const int batchSize = 4;
var generator = new SequenceLengthGenerator(alloc);
generator.Generate(inputTensor, batchSize, null);
Assert.IsNotNull(inputTensor.data);
Assert.AreEqual(inputTensor.data[0], 1);
alloc.Dispose();
}
[Test]
public void GenerateVectorObservation()
{
var inputTensor = new TensorProxy
{
shape = new long[] { 2, 3 }
};
const int batchSize = 4;
var agentInfos = GetFakeAgents();
var alloc = new TensorCachingAllocator();
var generator = new VectorObservationGenerator(alloc);
generator.AddSensorIndex(0);
generator.AddSensorIndex(1);
generator.AddSensorIndex(2);
var agent0 = agentInfos[0];
var agent1 = agentInfos[1];
var inputs = new List<AgentInfoSensorsPair>
{
new AgentInfoSensorsPair{agentInfo = agent0._Info, sensors = agent0.sensors},
new AgentInfoSensorsPair{agentInfo = agent1._Info, sensors = agent1.sensors},
};
generator.Generate(inputTensor, batchSize, inputs);
Assert.IsNotNull(inputTensor.data);
Assert.AreEqual(inputTensor.data[0, 0], 1);
Assert.AreEqual(inputTensor.data[0, 2], 3);
Assert.AreEqual(inputTensor.data[1, 0], 4);
Assert.AreEqual(inputTensor.data[1, 2], 6);
alloc.Dispose();
}
[Test]
public void GeneratePreviousActionInput()
{
var inputTensor = new TensorProxy
{
shape = new long[] { 2, 2 },
valueType = TensorProxy.TensorType.Integer
};
const int batchSize = 4;
var agentInfos = GetFakeAgents();
var alloc = new TensorCachingAllocator();
var generator = new PreviousActionInputGenerator(alloc);
var agent0 = agentInfos[0];
var agent1 = agentInfos[1];
var inputs = new List<AgentInfoSensorsPair>
{
new AgentInfoSensorsPair{agentInfo = agent0._Info, sensors = agent0.sensors},
new AgentInfoSensorsPair{agentInfo = agent1._Info, sensors = agent1.sensors},
};
generator.Generate(inputTensor, batchSize, inputs);
Assert.IsNotNull(inputTensor.data);
Assert.AreEqual(inputTensor.data[0, 0], 1);
Assert.AreEqual(inputTensor.data[0, 1], 2);
Assert.AreEqual(inputTensor.data[1, 0], 3);
Assert.AreEqual(inputTensor.data[1, 1], 4);
alloc.Dispose();
}
[Test]
public void GenerateActionMaskInput()
{
var inputTensor = new TensorProxy
{
shape = new long[] { 2, 5 },
valueType = TensorProxy.TensorType.FloatingPoint
};
const int batchSize = 4;
var agentInfos = GetFakeAgents();
var alloc = new TensorCachingAllocator();
var generator = new ActionMaskInputGenerator(alloc);
var agent0 = agentInfos[0];
var agent1 = agentInfos[1];
var inputs = new List<AgentInfoSensorsPair>
{
new AgentInfoSensorsPair{agentInfo = agent0._Info, sensors = agent0.sensors},
new AgentInfoSensorsPair{agentInfo = agent1._Info, sensors = agent1.sensors},
};
generator.Generate(inputTensor, batchSize, inputs);
Assert.IsNotNull(inputTensor.data);
Assert.AreEqual(inputTensor.data[0, 0], 1);
Assert.AreEqual(inputTensor.data[0, 4], 1);
Assert.AreEqual(inputTensor.data[1, 0], 0);
Assert.AreEqual(inputTensor.data[1, 4], 1);
alloc.Dispose();
}
}
}