您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
331 行
12 KiB
331 行
12 KiB
import itertools
|
|
import numpy as np
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import gym
|
|
from gym import error, spaces
|
|
|
|
from mlagents_envs.base_env import BaseEnv
|
|
from mlagents_envs.base_env import DecisionSteps, TerminalSteps
|
|
from mlagents_envs import logging_util
|
|
|
|
|
|
class UnityGymException(error.Error):
|
|
"""
|
|
Any error related to the gym wrapper of ml-agents.
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
logger = logging_util.get_logger(__name__)
|
|
logging_util.set_log_level(logging_util.INFO)
|
|
|
|
GymStepResult = Tuple[np.ndarray, float, bool, Dict]
|
|
|
|
|
|
class UnityToGymWrapper(gym.Env):
|
|
"""
|
|
Provides Gym wrapper for Unity Learning Environments.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
unity_env: BaseEnv,
|
|
use_visual: bool = False,
|
|
uint8_visual: bool = False,
|
|
flatten_branched: bool = False,
|
|
allow_multiple_visual_obs: bool = False,
|
|
):
|
|
"""
|
|
Environment initialization
|
|
:param unity_env: The Unity BaseEnv to be wrapped in the gym. Will be closed when the UnityToGymWrapper closes.
|
|
:param use_visual: Whether to use visual observation or vector observation.
|
|
:param uint8_visual: Return visual observations as uint8 (0-255) matrices instead of float (0.0-1.0).
|
|
:param flatten_branched: If True, turn branched discrete action spaces into a Discrete space rather than
|
|
MultiDiscrete.
|
|
:param allow_multiple_visual_obs: If True, return a list of visual observations instead of only one.
|
|
"""
|
|
self._env = unity_env
|
|
|
|
# Take a single step so that the brain information will be sent over
|
|
if not self._env.get_behavior_names():
|
|
self._env.step()
|
|
|
|
self.visual_obs = None
|
|
|
|
# Save the step result from the last time all Agents requested decisions.
|
|
self._previous_decision_step: DecisionSteps = None
|
|
self._flattener = None
|
|
# Hidden flag used by Atari environments to determine if the game is over
|
|
self.game_over = False
|
|
self._allow_multiple_visual_obs = allow_multiple_visual_obs
|
|
|
|
# Check brain configuration
|
|
if len(self._env.get_behavior_names()) != 1:
|
|
raise UnityGymException(
|
|
"There can only be one behavior in a UnityEnvironment "
|
|
"if it is wrapped in a gym."
|
|
)
|
|
|
|
self.name = self._env.get_behavior_names()[0]
|
|
self.group_spec = self._env.get_behavior_spec(self.name)
|
|
|
|
if use_visual and self._get_n_vis_obs() == 0:
|
|
raise UnityGymException(
|
|
"`use_visual` was set to True, however there are no"
|
|
" visual observations as part of this environment."
|
|
)
|
|
self.use_visual = self._get_n_vis_obs() >= 1 and use_visual
|
|
|
|
if not use_visual and uint8_visual:
|
|
logger.warning(
|
|
"`uint8_visual was set to true, but visual observations are not in use. "
|
|
"This setting will not have any effect."
|
|
)
|
|
else:
|
|
self.uint8_visual = uint8_visual
|
|
|
|
if self._get_n_vis_obs() > 1 and not self._allow_multiple_visual_obs:
|
|
logger.warning(
|
|
"The environment contains more than one visual observation. "
|
|
"You must define allow_multiple_visual_obs=True to received them all. "
|
|
"Otherwise, please note that only the first will be provided in the observation."
|
|
)
|
|
|
|
# Check for number of agents in scene.
|
|
self._env.reset()
|
|
decision_steps, _ = self._env.get_steps(self.name)
|
|
self._check_agents(len(decision_steps))
|
|
self._previous_decision_step = decision_steps
|
|
|
|
# Set observation and action spaces
|
|
if self.group_spec.is_action_discrete():
|
|
branches = self.group_spec.discrete_action_branches
|
|
if self.group_spec.action_shape == 1:
|
|
self._action_space = spaces.Discrete(branches[0])
|
|
else:
|
|
if flatten_branched:
|
|
self._flattener = ActionFlattener(branches)
|
|
self._action_space = self._flattener.action_space
|
|
else:
|
|
self._action_space = spaces.MultiDiscrete(branches)
|
|
|
|
else:
|
|
if flatten_branched:
|
|
logger.warning(
|
|
"The environment has a non-discrete action space. It will "
|
|
"not be flattened."
|
|
)
|
|
high = np.array([1] * self.group_spec.action_shape)
|
|
self._action_space = spaces.Box(-high, high, dtype=np.float32)
|
|
high = np.array([np.inf] * self._get_vec_obs_size())
|
|
if self.use_visual:
|
|
shape = self._get_vis_obs_shape()
|
|
if uint8_visual:
|
|
self._observation_space = spaces.Box(
|
|
0, 255, dtype=np.uint8, shape=shape
|
|
)
|
|
else:
|
|
self._observation_space = spaces.Box(
|
|
0, 1, dtype=np.float32, shape=shape
|
|
)
|
|
|
|
else:
|
|
self._observation_space = spaces.Box(-high, high, dtype=np.float32)
|
|
|
|
def reset(self) -> Union[List[np.ndarray], np.ndarray]:
|
|
"""Resets the state of the environment and returns an initial observation.
|
|
Returns: observation (object/list): the initial observation of the
|
|
space.
|
|
"""
|
|
self._env.reset()
|
|
decision_step, _ = self._env.get_steps(self.name)
|
|
n_agents = len(decision_step)
|
|
self._check_agents(n_agents)
|
|
self.game_over = False
|
|
|
|
res: GymStepResult = self._single_step(decision_step)
|
|
return res[0]
|
|
|
|
def step(self, action: List[Any]) -> GymStepResult:
|
|
"""Run one timestep of the environment's dynamics. When end of
|
|
episode is reached, you are responsible for calling `reset()`
|
|
to reset this environment's state.
|
|
Accepts an action and returns a tuple (observation, reward, done, info).
|
|
Args:
|
|
action (object/list): an action provided by the environment
|
|
Returns:
|
|
observation (object/list): agent's observation of the current environment
|
|
reward (float/list) : amount of reward returned after previous action
|
|
done (boolean/list): whether the episode has ended.
|
|
info (dict): contains auxiliary diagnostic information.
|
|
"""
|
|
if self._flattener is not None:
|
|
# Translate action into list
|
|
action = self._flattener.lookup_action(action)
|
|
|
|
spec = self.group_spec
|
|
action = np.array(action).reshape((1, spec.action_size))
|
|
self._env.set_actions(self.name, action)
|
|
|
|
self._env.step()
|
|
decision_step, terminal_step = self._env.get_steps(self.name)
|
|
self._check_agents(max(len(decision_step), len(terminal_step)))
|
|
if len(terminal_step) != 0:
|
|
# The agent is done
|
|
self.game_over = True
|
|
return self._single_step(terminal_step)
|
|
else:
|
|
return self._single_step(decision_step)
|
|
|
|
def _single_step(self, info: Union[DecisionSteps, TerminalSteps]) -> GymStepResult:
|
|
if self.use_visual:
|
|
visual_obs = self._get_vis_obs_list(info)
|
|
|
|
if self._allow_multiple_visual_obs:
|
|
visual_obs_list = []
|
|
for obs in visual_obs:
|
|
visual_obs_list.append(self._preprocess_single(obs[0]))
|
|
self.visual_obs = visual_obs_list
|
|
else:
|
|
self.visual_obs = self._preprocess_single(visual_obs[0][0])
|
|
|
|
default_observation = self.visual_obs
|
|
elif self._get_vec_obs_size() > 0:
|
|
default_observation = self._get_vector_obs(info)[0, :]
|
|
else:
|
|
raise UnityGymException(
|
|
"The Agent does not have vector observations and the environment was not setup "
|
|
+ "to use visual observations."
|
|
)
|
|
done = isinstance(info, TerminalSteps)
|
|
|
|
return (default_observation, info.reward[0], done, {"step": info})
|
|
|
|
def _preprocess_single(self, single_visual_obs: np.ndarray) -> np.ndarray:
|
|
if self.uint8_visual:
|
|
return (255.0 * single_visual_obs).astype(np.uint8)
|
|
else:
|
|
return single_visual_obs
|
|
|
|
def _get_n_vis_obs(self) -> int:
|
|
result = 0
|
|
for shape in self.group_spec.observation_shapes:
|
|
if len(shape) == 3:
|
|
result += 1
|
|
return result
|
|
|
|
def _get_vis_obs_shape(self) -> Optional[Tuple]:
|
|
for shape in self.group_spec.observation_shapes:
|
|
if len(shape) == 3:
|
|
return shape
|
|
return None
|
|
|
|
def _get_vis_obs_list(
|
|
self, step_result: Union[DecisionSteps, TerminalSteps]
|
|
) -> List[np.ndarray]:
|
|
result: List[np.ndarray] = []
|
|
for obs in step_result.obs:
|
|
if len(obs.shape) == 4:
|
|
result.append(obs)
|
|
return result
|
|
|
|
def _get_vector_obs(
|
|
self, step_result: Union[DecisionSteps, TerminalSteps]
|
|
) -> np.ndarray:
|
|
result: List[np.ndarray] = []
|
|
for obs in step_result.obs:
|
|
if len(obs.shape) == 2:
|
|
result.append(obs)
|
|
return np.concatenate(result, axis=1)
|
|
|
|
def _get_vec_obs_size(self) -> int:
|
|
result = 0
|
|
for shape in self.group_spec.observation_shapes:
|
|
if len(shape) == 1:
|
|
result += shape[0]
|
|
return result
|
|
|
|
def render(self, mode="rgb_array"):
|
|
return self.visual_obs
|
|
|
|
def close(self) -> None:
|
|
"""Override _close in your subclass to perform any necessary cleanup.
|
|
Environments will automatically close() themselves when
|
|
garbage collected or when the program exits.
|
|
"""
|
|
self._env.close()
|
|
|
|
def seed(self, seed: Any = None) -> None:
|
|
"""Sets the seed for this env's random number generator(s).
|
|
Currently not implemented.
|
|
"""
|
|
logger.warning("Could not seed environment %s", self.name)
|
|
return
|
|
|
|
@staticmethod
|
|
def _check_agents(n_agents: int) -> None:
|
|
if n_agents > 1:
|
|
raise UnityGymException(
|
|
f"There can only be one Agent in the environment but {n_agents} were detected."
|
|
)
|
|
|
|
@property
|
|
def metadata(self):
|
|
return {"render.modes": ["rgb_array"]}
|
|
|
|
@property
|
|
def reward_range(self) -> Tuple[float, float]:
|
|
return -float("inf"), float("inf")
|
|
|
|
@property
|
|
def spec(self):
|
|
return None
|
|
|
|
@property
|
|
def action_space(self):
|
|
return self._action_space
|
|
|
|
@property
|
|
def observation_space(self):
|
|
return self._observation_space
|
|
|
|
|
|
class ActionFlattener:
|
|
"""
|
|
Flattens branched discrete action spaces into single-branch discrete action spaces.
|
|
"""
|
|
|
|
def __init__(self, branched_action_space):
|
|
"""
|
|
Initialize the flattener.
|
|
:param branched_action_space: A List containing the sizes of each branch of the action
|
|
space, e.g. [2,3,3] for three branches with size 2, 3, and 3 respectively.
|
|
"""
|
|
self._action_shape = branched_action_space
|
|
self.action_lookup = self._create_lookup(self._action_shape)
|
|
self.action_space = spaces.Discrete(len(self.action_lookup))
|
|
|
|
@classmethod
|
|
def _create_lookup(self, branched_action_space):
|
|
"""
|
|
Creates a Dict that maps discrete actions (scalars) to branched actions (lists).
|
|
Each key in the Dict maps to one unique set of branched actions, and each value
|
|
contains the List of branched actions.
|
|
"""
|
|
possible_vals = [range(_num) for _num in branched_action_space]
|
|
all_actions = [list(_action) for _action in itertools.product(*possible_vals)]
|
|
# Dict should be faster than List for large action spaces
|
|
action_lookup = {
|
|
_scalar: _action for (_scalar, _action) in enumerate(all_actions)
|
|
}
|
|
return action_lookup
|
|
|
|
def lookup_action(self, action):
|
|
"""
|
|
Convert a scalar discrete action into a unique set of branched actions.
|
|
:param: action: A scalar value representing one of the discrete actions.
|
|
:return: The List containing the branched actions.
|
|
"""
|
|
return self.action_lookup[action]
|