Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

175 行
6.4 KiB

import pytest
import numpy as np
from mlagents.trainers.ghost.trainer import GhostTrainer
from mlagents.trainers.ghost.controller import GhostController
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers
from mlagents.trainers.ppo.trainer import PPOTrainer
from mlagents.trainers.agent_processor import AgentManagerQueue
from mlagents.trainers.tests import mock_brain as mb
from mlagents.trainers.tests.test_trajectory import make_fake_trajectory
from mlagents.trainers.settings import TrainerSettings, SelfPlaySettings
@pytest.fixture
def dummy_config():
return TrainerSettings(self_play=SelfPlaySettings())
VECTOR_ACTION_SPACE = 1
VECTOR_OBS_SPACE = 8
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
BUFFER_INIT_SAMPLES = 513
NUM_AGENTS = 12
@pytest.mark.parametrize("use_discrete", [True, False])
def test_load_and_set(dummy_config, use_discrete):
mock_specs = mb.setup_test_behavior_specs(
use_discrete,
False,
vector_action_space=DISCRETE_ACTION_SPACE
if use_discrete
else VECTOR_ACTION_SPACE,
vector_obs_space=VECTOR_OBS_SPACE,
)
trainer_params = dummy_config
trainer = PPOTrainer("test", 0, trainer_params, True, False, 0, "0")
trainer.seed = 1
policy = trainer.create_policy("test", mock_specs, create_graph=True)
trainer.seed = 20 # otherwise graphs are the same
to_load_policy = trainer.create_policy("test", mock_specs, create_graph=True)
weights = policy.get_weights()
load_weights = to_load_policy.get_weights()
try:
for w, lw in zip(weights, load_weights):
np.testing.assert_array_equal(w, lw)
except AssertionError:
pass
to_load_policy.load_weights(weights)
load_weights = to_load_policy.get_weights()
for w, lw in zip(weights, load_weights):
np.testing.assert_array_equal(w, lw)
def test_process_trajectory(dummy_config):
mock_specs = mb.setup_test_behavior_specs(
True, False, vector_action_space=[2], vector_obs_space=1
)
behavior_id_team0 = "test_brain?team=0"
behavior_id_team1 = "test_brain?team=1"
brain_name = BehaviorIdentifiers.from_name_behavior_id(behavior_id_team0).brain_name
ppo_trainer = PPOTrainer(brain_name, 0, dummy_config, True, False, 0, "0")
controller = GhostController(100)
trainer = GhostTrainer(
ppo_trainer, brain_name, controller, 0, dummy_config, True, "0"
)
# first policy encountered becomes policy trained by wrapped PPO
parsed_behavior_id0 = BehaviorIdentifiers.from_name_behavior_id(behavior_id_team0)
policy = trainer.create_policy(parsed_behavior_id0, mock_specs)
trainer.add_policy(parsed_behavior_id0, policy)
trajectory_queue0 = AgentManagerQueue(behavior_id_team0)
trainer.subscribe_trajectory_queue(trajectory_queue0)
# Ghost trainer should ignore this queue because off policy
parsed_behavior_id1 = BehaviorIdentifiers.from_name_behavior_id(behavior_id_team1)
policy = trainer.create_policy(parsed_behavior_id1, mock_specs)
trainer.add_policy(parsed_behavior_id1, policy)
trajectory_queue1 = AgentManagerQueue(behavior_id_team1)
trainer.subscribe_trajectory_queue(trajectory_queue1)
time_horizon = 15
trajectory = make_fake_trajectory(
length=time_horizon,
max_step_complete=True,
observation_shapes=[(1,)],
action_spec=mock_specs.action_spec,
)
trajectory_queue0.put(trajectory)
trainer.advance()
# Check that trainer put trajectory in update buffer
assert trainer.trainer.update_buffer.num_experiences == 15
trajectory_queue1.put(trajectory)
trainer.advance()
# Check that ghost trainer ignored off policy queue
assert trainer.trainer.update_buffer.num_experiences == 15
# Check that it emptied the queue
assert trajectory_queue1.empty()
def test_publish_queue(dummy_config):
mock_specs = mb.setup_test_behavior_specs(
True, False, vector_action_space=[1], vector_obs_space=8
)
behavior_id_team0 = "test_brain?team=0"
behavior_id_team1 = "test_brain?team=1"
parsed_behavior_id0 = BehaviorIdentifiers.from_name_behavior_id(behavior_id_team0)
brain_name = parsed_behavior_id0.brain_name
ppo_trainer = PPOTrainer(brain_name, 0, dummy_config, True, False, 0, "0")
controller = GhostController(100)
trainer = GhostTrainer(
ppo_trainer, brain_name, controller, 0, dummy_config, True, "0"
)
# First policy encountered becomes policy trained by wrapped PPO
# This queue should remain empty after swap snapshot
policy = trainer.create_policy(parsed_behavior_id0, mock_specs)
trainer.add_policy(parsed_behavior_id0, policy)
policy_queue0 = AgentManagerQueue(behavior_id_team0)
trainer.publish_policy_queue(policy_queue0)
# Ghost trainer should use this queue for ghost policy swap
parsed_behavior_id1 = BehaviorIdentifiers.from_name_behavior_id(behavior_id_team1)
policy = trainer.create_policy(parsed_behavior_id1, mock_specs)
trainer.add_policy(parsed_behavior_id1, policy)
policy_queue1 = AgentManagerQueue(behavior_id_team1)
trainer.publish_policy_queue(policy_queue1)
# check ghost trainer swap pushes to ghost queue and not trainer
assert policy_queue0.empty() and policy_queue1.empty()
trainer._swap_snapshots()
assert policy_queue0.empty() and not policy_queue1.empty()
# clear
policy_queue1.get_nowait()
mock_specs = mb.setup_test_behavior_specs(
False,
False,
vector_action_space=VECTOR_ACTION_SPACE,
vector_obs_space=VECTOR_OBS_SPACE,
)
buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, mock_specs)
# Mock out reward signal eval
buffer["extrinsic_rewards"] = buffer["environment_rewards"]
buffer["extrinsic_returns"] = buffer["environment_rewards"]
buffer["extrinsic_value_estimates"] = buffer["environment_rewards"]
buffer["curiosity_rewards"] = buffer["environment_rewards"]
buffer["curiosity_returns"] = buffer["environment_rewards"]
buffer["curiosity_value_estimates"] = buffer["environment_rewards"]
buffer["advantages"] = buffer["environment_rewards"]
trainer.trainer.update_buffer = buffer
# when ghost trainer advance and wrapped trainer buffers full
# the wrapped trainer pushes updated policy to correct queue
assert policy_queue0.empty() and policy_queue1.empty()
trainer.advance()
assert not policy_queue0.empty() and policy_queue1.empty()
if __name__ == "__main__":
pytest.main()