您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
285 行
10 KiB
285 行
10 KiB
# # Unity ML-Agents Toolkit
|
|
# ## ML-Agent Learning
|
|
"""Launches trainers for each External Brains in a Unity Environment."""
|
|
|
|
import os
|
|
import threading
|
|
from typing import Dict, Set, List
|
|
from collections import defaultdict
|
|
|
|
import numpy as np
|
|
from mlagents.tf_utils import tf
|
|
|
|
from mlagents_envs.logging_util import get_logger
|
|
from mlagents.trainers.env_manager import EnvManager
|
|
from mlagents_envs.exception import (
|
|
UnityEnvironmentException,
|
|
UnityCommunicationException,
|
|
UnityCommunicatorStoppedException,
|
|
)
|
|
from mlagents_envs.timers import (
|
|
hierarchical_timer,
|
|
timed,
|
|
get_timer_stack_for_thread,
|
|
merge_gauges,
|
|
)
|
|
from mlagents.trainers.trainer import Trainer
|
|
from mlagents.trainers.environment_parameter_manager import EnvironmentParameterManager
|
|
from mlagents.trainers.trainer_util import TrainerFactory
|
|
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers
|
|
from mlagents.trainers.agent_processor import AgentManager
|
|
|
|
|
|
class TrainerController(object):
|
|
def __init__(
|
|
self,
|
|
trainer_factory: TrainerFactory,
|
|
output_path: str,
|
|
run_id: str,
|
|
param_manager: EnvironmentParameterManager,
|
|
train: bool,
|
|
training_seed: int,
|
|
):
|
|
"""
|
|
:param output_path: Path to save the model.
|
|
:param summaries_dir: Folder to save training summaries.
|
|
:param run_id: The sub-directory name for model and summary statistics
|
|
:param param_manager: EnvironmentParameterManager object which stores information about all
|
|
environment parameters.
|
|
:param train: Whether to train model, or only run inference.
|
|
:param training_seed: Seed to use for Numpy and Tensorflow random number generation.
|
|
:param threaded: Whether or not to run trainers in a separate thread. Disable for testing/debugging.
|
|
"""
|
|
self.trainers: Dict[str, Trainer] = {}
|
|
self.brain_name_to_identifier: Dict[str, Set] = defaultdict(set)
|
|
self.trainer_factory = trainer_factory
|
|
self.output_path = output_path
|
|
self.logger = get_logger(__name__)
|
|
self.run_id = run_id
|
|
self.train_model = train
|
|
self.param_manager = param_manager
|
|
self.ghost_controller = self.trainer_factory.ghost_controller
|
|
|
|
self.trainer_threads: List[threading.Thread] = []
|
|
self.kill_trainers = False
|
|
np.random.seed(training_seed)
|
|
tf.set_random_seed(training_seed)
|
|
|
|
@timed
|
|
def _save_models(self):
|
|
"""
|
|
Saves current model to checkpoint folder.
|
|
"""
|
|
for brain_name in self.trainers.keys():
|
|
self.trainers[brain_name].save_model()
|
|
self.logger.info("Saved Model")
|
|
|
|
def _save_model_when_interrupted(self):
|
|
self.logger.info(
|
|
"Learning was interrupted. Please wait while the graph is generated."
|
|
)
|
|
self._save_models()
|
|
|
|
def _export_graph(self):
|
|
"""
|
|
Saves models for all trainers.
|
|
"""
|
|
for brain_name in self.trainers.keys():
|
|
self.trainers[brain_name].save_model()
|
|
|
|
@staticmethod
|
|
def _create_output_path(output_path):
|
|
try:
|
|
if not os.path.exists(output_path):
|
|
os.makedirs(output_path)
|
|
except Exception:
|
|
raise UnityEnvironmentException(
|
|
f"The folder {output_path} containing the "
|
|
"generated model could not be "
|
|
"accessed. Please make sure the "
|
|
"permissions are set correctly."
|
|
)
|
|
|
|
@timed
|
|
def _reset_env(self, env: EnvManager) -> None:
|
|
"""Resets the environment.
|
|
|
|
Returns:
|
|
A Data structure corresponding to the initial reset state of the
|
|
environment.
|
|
"""
|
|
new_config = self.param_manager.get_current_samplers()
|
|
env.reset(config=new_config)
|
|
|
|
def _not_done_training(self) -> bool:
|
|
return (
|
|
any(t.should_still_train for t in self.trainers.values())
|
|
or not self.train_model
|
|
) or len(self.trainers) == 0
|
|
|
|
def _create_trainer_and_manager(
|
|
self, env_manager: EnvManager, name_behavior_id: str
|
|
) -> None:
|
|
|
|
parsed_behavior_id = BehaviorIdentifiers.from_name_behavior_id(name_behavior_id)
|
|
brain_name = parsed_behavior_id.brain_name
|
|
trainerthread = None
|
|
try:
|
|
trainer = self.trainers[brain_name]
|
|
except KeyError:
|
|
trainer = self.trainer_factory.generate(brain_name)
|
|
self.trainers[brain_name] = trainer
|
|
if trainer.threaded:
|
|
# Only create trainer thread for new trainers
|
|
trainerthread = threading.Thread(
|
|
target=self.trainer_update_func, args=(trainer,), daemon=True
|
|
)
|
|
self.trainer_threads.append(trainerthread)
|
|
|
|
policy = trainer.create_policy(
|
|
parsed_behavior_id, env_manager.training_behaviors[name_behavior_id]
|
|
)
|
|
trainer.add_policy(parsed_behavior_id, policy)
|
|
|
|
agent_manager = AgentManager(
|
|
policy,
|
|
name_behavior_id,
|
|
trainer.stats_reporter,
|
|
trainer.parameters.time_horizon,
|
|
threaded=trainer.threaded,
|
|
)
|
|
env_manager.set_agent_manager(name_behavior_id, agent_manager)
|
|
env_manager.set_policy(name_behavior_id, policy)
|
|
self.brain_name_to_identifier[brain_name].add(name_behavior_id)
|
|
|
|
trainer.publish_policy_queue(agent_manager.policy_queue)
|
|
trainer.subscribe_trajectory_queue(agent_manager.trajectory_queue)
|
|
|
|
# Only start new trainers
|
|
if trainerthread is not None:
|
|
trainerthread.start()
|
|
|
|
def _create_trainers_and_managers(
|
|
self, env_manager: EnvManager, behavior_ids: Set[str]
|
|
) -> None:
|
|
for behavior_id in behavior_ids:
|
|
self._create_trainer_and_manager(env_manager, behavior_id)
|
|
|
|
@timed
|
|
def start_learning(self, env_manager: EnvManager) -> None:
|
|
self._create_output_path(self.output_path)
|
|
tf.reset_default_graph()
|
|
last_brain_behavior_ids: Set[str] = set()
|
|
try:
|
|
# Initial reset
|
|
self._reset_env(env_manager)
|
|
while self._not_done_training():
|
|
external_brain_behavior_ids = set(env_manager.training_behaviors.keys())
|
|
new_behavior_ids = external_brain_behavior_ids - last_brain_behavior_ids
|
|
self._create_trainers_and_managers(env_manager, new_behavior_ids)
|
|
last_brain_behavior_ids = external_brain_behavior_ids
|
|
n_steps = self.advance(env_manager)
|
|
for _ in range(n_steps):
|
|
self.reset_env_if_ready(env_manager)
|
|
# Stop advancing trainers
|
|
self.join_threads()
|
|
except (
|
|
KeyboardInterrupt,
|
|
UnityCommunicationException,
|
|
UnityEnvironmentException,
|
|
UnityCommunicatorStoppedException,
|
|
) as ex:
|
|
self.join_threads()
|
|
self.logger.info(
|
|
"Learning was interrupted. Please wait while the graph is generated."
|
|
)
|
|
if isinstance(ex, KeyboardInterrupt) or isinstance(
|
|
ex, UnityCommunicatorStoppedException
|
|
):
|
|
pass
|
|
else:
|
|
# If the environment failed, we want to make sure to raise
|
|
# the exception so we exit the process with an return code of 1.
|
|
raise ex
|
|
finally:
|
|
if self.train_model:
|
|
self._save_models()
|
|
|
|
def end_trainer_episodes(self) -> None:
|
|
# Reward buffers reset takes place only for curriculum learning
|
|
# else no reset.
|
|
for trainer in self.trainers.values():
|
|
trainer.end_episode()
|
|
|
|
def reset_env_if_ready(self, env: EnvManager) -> None:
|
|
# Get the sizes of the reward buffers.
|
|
reward_buff = {k: list(t.reward_buffer) for (k, t) in self.trainers.items()}
|
|
curr_step = {k: int(t.step) for (k, t) in self.trainers.items()}
|
|
max_step = {k: int(t.get_max_steps) for (k, t) in self.trainers.items()}
|
|
# Attempt to increment the lessons of the brains who
|
|
# were ready.
|
|
updated, param_must_reset = self.param_manager.update_lessons(
|
|
curr_step, max_step, reward_buff
|
|
)
|
|
if updated:
|
|
for trainer in self.trainers.values():
|
|
trainer.reward_buffer.clear()
|
|
# If ghost trainer swapped teams
|
|
ghost_controller_reset = self.ghost_controller.should_reset()
|
|
if param_must_reset or ghost_controller_reset:
|
|
self._reset_env(env) # This reset also sends the new config to env
|
|
self.end_trainer_episodes()
|
|
elif updated:
|
|
env.set_env_parameters(self.param_manager.get_current_samplers())
|
|
|
|
@timed
|
|
def advance(self, env: EnvManager) -> int:
|
|
# Get steps
|
|
with hierarchical_timer("env_step"):
|
|
num_steps = env.advance()
|
|
|
|
# Report current lesson for each environment parameter
|
|
for (
|
|
param_name,
|
|
lesson_number,
|
|
) in self.param_manager.get_current_lesson_number().items():
|
|
for trainer in self.trainers.values():
|
|
trainer.stats_reporter.set_stat(
|
|
f"Environment/Lesson/{param_name}", lesson_number
|
|
)
|
|
|
|
for trainer in self.trainers.values():
|
|
if not trainer.threaded:
|
|
with hierarchical_timer("trainer_advance"):
|
|
trainer.advance()
|
|
|
|
return num_steps
|
|
|
|
def join_threads(self, timeout_seconds: float = 1.0) -> None:
|
|
"""
|
|
Wait for threads to finish, and merge their timer information into the main thread.
|
|
:param timeout_seconds:
|
|
:return:
|
|
"""
|
|
self.kill_trainers = True
|
|
for t in self.trainer_threads:
|
|
try:
|
|
t.join(timeout_seconds)
|
|
except Exception:
|
|
pass
|
|
|
|
with hierarchical_timer("trainer_threads") as main_timer_node:
|
|
for trainer_thread in self.trainer_threads:
|
|
thread_timer_stack = get_timer_stack_for_thread(trainer_thread)
|
|
if thread_timer_stack:
|
|
main_timer_node.merge(
|
|
thread_timer_stack.root,
|
|
root_name="thread_root",
|
|
is_parallel=True,
|
|
)
|
|
merge_gauges(thread_timer_stack.gauges)
|
|
|
|
def trainer_update_func(self, trainer: Trainer) -> None:
|
|
while not self.kill_trainers:
|
|
with hierarchical_timer("trainer_advance"):
|
|
trainer.advance()
|