Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

338 行
12 KiB

from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers
import pytest
import numpy as np
import attr
# Import to avoid circular import
from mlagents.trainers.trainer.trainer_factory import TrainerFactory # noqa F401
from mlagents.trainers.poca.optimizer_torch import TorchPOCAOptimizer
from mlagents.trainers.poca.trainer import POCATrainer
from mlagents.trainers.settings import RewardSignalSettings, RewardSignalType
from mlagents.trainers.policy.torch_policy import TorchPolicy
from mlagents.trainers.tests import mock_brain as mb
from mlagents.trainers.tests.mock_brain import copy_buffer_fields
from mlagents.trainers.tests.test_trajectory import make_fake_trajectory
from mlagents.trainers.settings import NetworkSettings
from mlagents.trainers.tests.dummy_config import ( # noqa: F401
create_observation_specs_with_shapes,
poca_dummy_config,
curiosity_dummy_config,
gail_dummy_config,
)
from mlagents.trainers.agent_processor import AgentManagerQueue
from mlagents.trainers.settings import TrainerSettings
from mlagents_envs.base_env import ActionSpec, BehaviorSpec
from mlagents.trainers.buffer import BufferKey, RewardSignalUtil
@pytest.fixture
def dummy_config():
return poca_dummy_config()
VECTOR_ACTION_SPACE = 2
VECTOR_OBS_SPACE = 8
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
BUFFER_INIT_SAMPLES = 64
NUM_AGENTS = 4
CONTINUOUS_ACTION_SPEC = ActionSpec.create_continuous(VECTOR_ACTION_SPACE)
DISCRETE_ACTION_SPEC = ActionSpec.create_discrete(tuple(DISCRETE_ACTION_SPACE))
def create_test_poca_optimizer(dummy_config, use_rnn, use_discrete, use_visual):
mock_specs = mb.setup_test_behavior_specs(
use_discrete,
use_visual,
vector_action_space=DISCRETE_ACTION_SPACE
if use_discrete
else VECTOR_ACTION_SPACE,
vector_obs_space=VECTOR_OBS_SPACE,
)
trainer_settings = attr.evolve(dummy_config)
trainer_settings.reward_signals = {
RewardSignalType.EXTRINSIC: RewardSignalSettings(strength=1.0, gamma=0.99)
}
trainer_settings.network_settings.memory = (
NetworkSettings.MemorySettings(sequence_length=8, memory_size=10)
if use_rnn
else None
)
policy = TorchPolicy(0, mock_specs, trainer_settings, "test", False)
optimizer = TorchPOCAOptimizer(policy, trainer_settings)
return optimizer
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
def test_poca_optimizer_update(dummy_config, rnn, visual, discrete):
# Test evaluate
optimizer = create_test_poca_optimizer(
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual
)
# Test update
update_buffer = mb.simulate_rollout(
BUFFER_INIT_SAMPLES,
optimizer.policy.behavior_spec,
memory_size=optimizer.policy.m_size,
num_other_agents_in_group=NUM_AGENTS,
)
# Mock out reward signal eval
copy_buffer_fields(
update_buffer,
BufferKey.ENVIRONMENT_REWARDS,
[
BufferKey.ADVANTAGES,
RewardSignalUtil.returns_key("extrinsic"),
RewardSignalUtil.value_estimates_key("extrinsic"),
RewardSignalUtil.baseline_estimates_key("extrinsic"),
],
)
# Copy memories to critic memories
copy_buffer_fields(
update_buffer,
BufferKey.MEMORY,
[BufferKey.CRITIC_MEMORY, BufferKey.BASELINE_MEMORY],
)
return_stats = optimizer.update(
update_buffer,
num_sequences=update_buffer.num_experiences // optimizer.policy.sequence_length,
)
# Make sure we have the right stats
required_stats = [
"Losses/Policy Loss",
"Losses/Value Loss",
"Policy/Learning Rate",
"Policy/Epsilon",
"Policy/Beta",
]
for stat in required_stats:
assert stat in return_stats.keys()
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
def test_poca_get_value_estimates(dummy_config, rnn, visual, discrete):
optimizer = create_test_poca_optimizer(
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual
)
time_horizon = 30
trajectory = make_fake_trajectory(
length=time_horizon,
observation_specs=optimizer.policy.behavior_spec.observation_specs,
action_spec=DISCRETE_ACTION_SPEC if discrete else CONTINUOUS_ACTION_SPEC,
max_step_complete=True,
num_other_agents_in_group=NUM_AGENTS,
)
(
value_estimates,
baseline_estimates,
value_next,
value_memories,
baseline_memories,
) = optimizer.get_trajectory_and_baseline_value_estimates(
trajectory.to_agentbuffer(),
trajectory.next_obs,
trajectory.next_group_obs,
done=False,
)
for key, val in value_estimates.items():
assert type(key) is str
assert len(val) == time_horizon
for key, val in baseline_estimates.items():
assert type(key) is str
assert len(val) == time_horizon
if value_memories is not None:
assert len(value_memories) == time_horizon
assert len(baseline_memories) == time_horizon
(
value_estimates,
baseline_estimates,
value_next,
value_memories,
baseline_memories,
) = optimizer.get_trajectory_and_baseline_value_estimates(
trajectory.to_agentbuffer(),
trajectory.next_obs,
trajectory.next_group_obs,
done=True,
)
for key, val in value_next.items():
assert type(key) is str
assert val == 0.0
# Check if we ignore terminal states properly
optimizer.reward_signals["extrinsic"].use_terminal_states = False
(
value_estimates,
baseline_estimates,
value_next,
value_memories,
baseline_memories,
) = optimizer.get_trajectory_and_baseline_value_estimates(
trajectory.to_agentbuffer(),
trajectory.next_obs,
trajectory.next_group_obs,
done=False,
)
for key, val in value_next.items():
assert type(key) is str
assert val != 0.0
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
# We need to test this separately from test_reward_signals.py to ensure no interactions
def test_poca_optimizer_update_curiosity(
dummy_config, curiosity_dummy_config, rnn, visual, discrete # noqa: F811
):
# Test evaluate
dummy_config.reward_signals = curiosity_dummy_config
optimizer = create_test_poca_optimizer(
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual
)
# Test update
update_buffer = mb.simulate_rollout(
BUFFER_INIT_SAMPLES,
optimizer.policy.behavior_spec,
memory_size=optimizer.policy.m_size,
)
# Mock out reward signal eval
copy_buffer_fields(
update_buffer,
src_key=BufferKey.ENVIRONMENT_REWARDS,
dst_keys=[
BufferKey.ADVANTAGES,
RewardSignalUtil.returns_key("extrinsic"),
RewardSignalUtil.value_estimates_key("extrinsic"),
RewardSignalUtil.baseline_estimates_key("extrinsic"),
RewardSignalUtil.returns_key("curiosity"),
RewardSignalUtil.value_estimates_key("curiosity"),
RewardSignalUtil.baseline_estimates_key("curiosity"),
],
)
# Copy memories to critic memories
copy_buffer_fields(
update_buffer,
BufferKey.MEMORY,
[BufferKey.CRITIC_MEMORY, BufferKey.BASELINE_MEMORY],
)
optimizer.update(
update_buffer,
num_sequences=update_buffer.num_experiences // optimizer.policy.sequence_length,
)
# We need to test this separately from test_reward_signals.py to ensure no interactions
def test_poca_optimizer_update_gail(gail_dummy_config, dummy_config): # noqa: F811
# Test evaluate
dummy_config.reward_signals = gail_dummy_config
config = poca_dummy_config()
optimizer = create_test_poca_optimizer(
config, use_rnn=False, use_discrete=False, use_visual=False
)
# Test update
update_buffer = mb.simulate_rollout(
BUFFER_INIT_SAMPLES, optimizer.policy.behavior_spec
)
# Mock out reward signal eval
copy_buffer_fields(
update_buffer,
src_key=BufferKey.ENVIRONMENT_REWARDS,
dst_keys=[
BufferKey.ADVANTAGES,
RewardSignalUtil.returns_key("extrinsic"),
RewardSignalUtil.value_estimates_key("extrinsic"),
RewardSignalUtil.baseline_estimates_key("extrinsic"),
RewardSignalUtil.returns_key("gail"),
RewardSignalUtil.value_estimates_key("gail"),
RewardSignalUtil.baseline_estimates_key("gail"),
],
)
update_buffer[BufferKey.CONTINUOUS_LOG_PROBS] = np.ones_like(
update_buffer[BufferKey.CONTINUOUS_ACTION]
)
optimizer.update(
update_buffer,
num_sequences=update_buffer.num_experiences // optimizer.policy.sequence_length,
)
# Check if buffer size is too big
update_buffer = mb.simulate_rollout(3000, optimizer.policy.behavior_spec)
# Mock out reward signal eval
copy_buffer_fields(
update_buffer,
src_key=BufferKey.ENVIRONMENT_REWARDS,
dst_keys=[
BufferKey.ADVANTAGES,
RewardSignalUtil.returns_key("extrinsic"),
RewardSignalUtil.value_estimates_key("extrinsic"),
RewardSignalUtil.baseline_estimates_key("extrinsic"),
RewardSignalUtil.returns_key("gail"),
RewardSignalUtil.value_estimates_key("gail"),
RewardSignalUtil.baseline_estimates_key("gail"),
],
)
optimizer.update(
update_buffer,
num_sequences=update_buffer.num_experiences // optimizer.policy.sequence_length,
)
def test_poca_end_episode():
name_behavior_id = "test_trainer"
trainer = POCATrainer(
name_behavior_id,
10,
TrainerSettings(max_steps=100, checkpoint_interval=10, summary_freq=20),
True,
False,
0,
"mock_model_path",
)
behavior_spec = BehaviorSpec(
create_observation_specs_with_shapes([(1,)]), ActionSpec.create_discrete((2,))
)
parsed_behavior_id = BehaviorIdentifiers.from_name_behavior_id(name_behavior_id)
mock_policy = trainer.create_policy(parsed_behavior_id, behavior_spec)
trainer.add_policy(parsed_behavior_id, mock_policy)
trajectory_queue = AgentManagerQueue("testbrain")
policy_queue = AgentManagerQueue("testbrain")
trainer.subscribe_trajectory_queue(trajectory_queue)
trainer.publish_policy_queue(policy_queue)
time_horizon = 10
trajectory = mb.make_fake_trajectory(
length=time_horizon,
observation_specs=behavior_spec.observation_specs,
max_step_complete=False,
action_spec=behavior_spec.action_spec,
num_other_agents_in_group=2,
group_reward=1.0,
is_terminal=False,
)
trajectory_queue.put(trajectory)
trainer.advance()
# Test that some trajectoories have been injested
for reward in trainer.collected_group_rewards.values():
assert reward == 10
# Test end episode
trainer.end_episode()
assert len(trainer.collected_group_rewards.keys()) == 0
if __name__ == "__main__":
pytest.main()