您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
226 行
7.6 KiB
226 行
7.6 KiB
import pytest
|
|
from mlagents.torch_utils import torch
|
|
import numpy as np
|
|
|
|
from mlagents.trainers.torch.utils import ModelUtils
|
|
from mlagents.trainers.torch.layers import linear_layer, LinearEncoder
|
|
from mlagents.trainers.torch.attention import (
|
|
MultiHeadAttention,
|
|
EntityEmbedding,
|
|
ResidualSelfAttention,
|
|
get_zero_entities_mask,
|
|
)
|
|
|
|
|
|
def test_multi_head_attention_initialization():
|
|
n_h, emb_size = 4, 12
|
|
n_k, n_q, b = 13, 14, 15
|
|
mha = MultiHeadAttention(emb_size, n_h)
|
|
|
|
query = torch.ones((b, n_q, emb_size))
|
|
key = torch.ones((b, n_k, emb_size))
|
|
value = torch.ones((b, n_k, emb_size))
|
|
|
|
output, attention = mha.forward(query, key, value, n_q, n_k)
|
|
|
|
assert output.shape == (b, n_q, emb_size)
|
|
assert attention.shape == (b, n_h, n_q, n_k)
|
|
|
|
|
|
def test_multi_head_attention_masking():
|
|
epsilon = 0.0001
|
|
n_h, emb_size = 4, 12
|
|
n_k, n_q, b = 13, 14, 15
|
|
mha = MultiHeadAttention(emb_size, n_h)
|
|
# create a key input with some keys all 0
|
|
query = torch.ones((b, n_q, emb_size))
|
|
key = torch.ones((b, n_k, emb_size))
|
|
value = torch.ones((b, n_k, emb_size))
|
|
|
|
mask = torch.zeros((b, n_k))
|
|
for i in range(n_k):
|
|
if i % 3 == 0:
|
|
key[:, i, :] = 0
|
|
mask[:, i] = 1
|
|
|
|
_, attention = mha.forward(query, key, value, n_q, n_k, mask)
|
|
|
|
for i in range(n_k):
|
|
if i % 3 == 0:
|
|
assert torch.sum(attention[:, :, :, i] ** 2) < epsilon
|
|
else:
|
|
assert torch.sum(attention[:, :, :, i] ** 2) > epsilon
|
|
|
|
|
|
def test_zero_mask_layer():
|
|
batch_size, size = 10, 30
|
|
|
|
def generate_input_helper(pattern):
|
|
_input = torch.zeros((batch_size, 0, size))
|
|
for i in range(len(pattern)):
|
|
if i % 2 == 0:
|
|
_input = torch.cat(
|
|
[_input, torch.rand((batch_size, pattern[i], size))], dim=1
|
|
)
|
|
else:
|
|
_input = torch.cat(
|
|
[_input, torch.zeros((batch_size, pattern[i], size))], dim=1
|
|
)
|
|
return _input
|
|
|
|
masking_pattern_1 = [3, 2, 3, 4]
|
|
masking_pattern_2 = [5, 7, 8, 2]
|
|
input_1 = generate_input_helper(masking_pattern_1)
|
|
input_2 = generate_input_helper(masking_pattern_2)
|
|
|
|
masks = get_zero_entities_mask([input_1, input_2])
|
|
assert len(masks) == 2
|
|
masks_1 = masks[0]
|
|
masks_2 = masks[1]
|
|
assert masks_1.shape == (batch_size, sum(masking_pattern_1))
|
|
assert masks_2.shape == (batch_size, sum(masking_pattern_2))
|
|
for i in masking_pattern_1:
|
|
assert masks_1[0, 1] == 0 if i % 2 == 0 else 1
|
|
for i in masking_pattern_2:
|
|
assert masks_2[0, 1] == 0 if i % 2 == 0 else 1
|
|
|
|
|
|
@pytest.mark.parametrize("mask_value", [0, 1])
|
|
def test_all_masking(mask_value):
|
|
# We make sure that a mask of all zeros or all ones will not trigger an error
|
|
np.random.seed(1336)
|
|
torch.manual_seed(1336)
|
|
size, n_k, = 3, 5
|
|
embedding_size = 64
|
|
entity_embeddings = EntityEmbedding(size, n_k, embedding_size)
|
|
entity_embeddings.add_self_embedding(size)
|
|
transformer = ResidualSelfAttention(embedding_size, n_k)
|
|
l_layer = linear_layer(embedding_size, size)
|
|
optimizer = torch.optim.Adam(
|
|
list(entity_embeddings.parameters())
|
|
+ list(transformer.parameters())
|
|
+ list(l_layer.parameters()),
|
|
lr=0.001,
|
|
weight_decay=1e-6,
|
|
)
|
|
batch_size = 20
|
|
for _ in range(5):
|
|
center = torch.rand((batch_size, size))
|
|
key = torch.rand((batch_size, n_k, size))
|
|
with torch.no_grad():
|
|
# create the target : The key closest to the query in euclidean distance
|
|
distance = torch.sum(
|
|
(center.reshape((batch_size, 1, size)) - key) ** 2, dim=2
|
|
)
|
|
argmin = torch.argmin(distance, dim=1)
|
|
target = []
|
|
for i in range(batch_size):
|
|
target += [key[i, argmin[i], :]]
|
|
target = torch.stack(target, dim=0)
|
|
target = target.detach()
|
|
|
|
embeddings = entity_embeddings(center, key)
|
|
masks = [torch.ones_like(key[:, :, 0]) * mask_value]
|
|
prediction = transformer.forward(embeddings, masks)
|
|
prediction = l_layer(prediction)
|
|
prediction = prediction.reshape((batch_size, size))
|
|
error = torch.mean((prediction - target) ** 2, dim=1)
|
|
error = torch.mean(error) / 2
|
|
optimizer.zero_grad()
|
|
error.backward()
|
|
optimizer.step()
|
|
|
|
|
|
def test_predict_closest_training():
|
|
np.random.seed(1336)
|
|
torch.manual_seed(1336)
|
|
size, n_k, = 3, 5
|
|
embedding_size = 64
|
|
entity_embeddings = EntityEmbedding(size, n_k, embedding_size)
|
|
entity_embeddings.add_self_embedding(size)
|
|
transformer = ResidualSelfAttention(embedding_size, n_k)
|
|
l_layer = linear_layer(embedding_size, size)
|
|
optimizer = torch.optim.Adam(
|
|
list(entity_embeddings.parameters())
|
|
+ list(transformer.parameters())
|
|
+ list(l_layer.parameters()),
|
|
lr=0.001,
|
|
weight_decay=1e-6,
|
|
)
|
|
batch_size = 200
|
|
for _ in range(200):
|
|
center = torch.rand((batch_size, size))
|
|
key = torch.rand((batch_size, n_k, size))
|
|
with torch.no_grad():
|
|
# create the target : The key closest to the query in euclidean distance
|
|
distance = torch.sum(
|
|
(center.reshape((batch_size, 1, size)) - key) ** 2, dim=2
|
|
)
|
|
argmin = torch.argmin(distance, dim=1)
|
|
target = []
|
|
for i in range(batch_size):
|
|
target += [key[i, argmin[i], :]]
|
|
target = torch.stack(target, dim=0)
|
|
target = target.detach()
|
|
|
|
embeddings = entity_embeddings(center, key)
|
|
masks = get_zero_entities_mask([key])
|
|
prediction = transformer.forward(embeddings, masks)
|
|
prediction = l_layer(prediction)
|
|
prediction = prediction.reshape((batch_size, size))
|
|
error = torch.mean((prediction - target) ** 2, dim=1)
|
|
error = torch.mean(error) / 2
|
|
print(error.item())
|
|
optimizer.zero_grad()
|
|
error.backward()
|
|
optimizer.step()
|
|
assert error.item() < 0.02
|
|
|
|
|
|
def test_predict_minimum_training():
|
|
# of 5 numbers, predict index of min
|
|
np.random.seed(1336)
|
|
torch.manual_seed(1336)
|
|
n_k = 5
|
|
size = n_k + 1
|
|
embedding_size = 64
|
|
entity_embedding = EntityEmbedding(size, n_k, embedding_size) # no self
|
|
transformer = ResidualSelfAttention(embedding_size)
|
|
l_layer = LinearEncoder(embedding_size, 2, n_k)
|
|
loss = torch.nn.CrossEntropyLoss()
|
|
optimizer = torch.optim.Adam(
|
|
list(entity_embedding.parameters())
|
|
+ list(transformer.parameters())
|
|
+ list(l_layer.parameters()),
|
|
lr=0.001,
|
|
weight_decay=1e-6,
|
|
)
|
|
|
|
batch_size = 200
|
|
onehots = ModelUtils.actions_to_onehot(torch.range(0, n_k - 1).unsqueeze(1), [n_k])[
|
|
0
|
|
]
|
|
onehots = onehots.expand((batch_size, -1, -1))
|
|
losses = []
|
|
for _ in range(400):
|
|
num = np.random.randint(0, n_k)
|
|
inp = torch.rand((batch_size, num + 1, 1))
|
|
with torch.no_grad():
|
|
# create the target : The minimum
|
|
argmin = torch.argmin(inp, dim=1)
|
|
argmin = argmin.squeeze()
|
|
argmin = argmin.detach()
|
|
sliced_oh = onehots[:, : num + 1]
|
|
inp = torch.cat([inp, sliced_oh], dim=2)
|
|
|
|
embeddings = entity_embedding(inp, inp)
|
|
masks = get_zero_entities_mask([inp])
|
|
prediction = transformer(embeddings, masks)
|
|
prediction = l_layer(prediction)
|
|
ce = loss(prediction, argmin)
|
|
losses.append(ce.item())
|
|
print(ce.item())
|
|
optimizer.zero_grad()
|
|
ce.backward()
|
|
optimizer.step()
|
|
assert np.array(losses[-20:]).mean() < 0.1
|