Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

84 行
3.3 KiB

from typing import Dict, List
from mlagents_envs.base_env import BaseEnv, BehaviorName, BehaviorSpec
from mlagents.trainers.env_manager import EnvManager, EnvironmentStep, AllStepResult
from mlagents_envs.timers import timed
from mlagents.trainers.action_info import ActionInfo
from mlagents.trainers.settings import ParameterRandomizationSettings
from mlagents_envs.side_channel.environment_parameters_channel import (
EnvironmentParametersChannel,
)
class SimpleEnvManager(EnvManager):
"""
Simple implementation of the EnvManager interface that only handles one BaseEnv at a time.
This is generally only useful for testing; see SubprocessEnvManager for a production-quality implementation.
"""
def __init__(self, env: BaseEnv, env_params: EnvironmentParametersChannel):
super().__init__()
self.env_params = env_params
self.env = env
self.previous_step: EnvironmentStep = EnvironmentStep.empty(0)
self.previous_all_action_info: Dict[str, ActionInfo] = {}
def _step(self) -> List[EnvironmentStep]:
all_action_info = self._take_step(self.previous_step)
self.previous_all_action_info = all_action_info
for brain_name, action_info in all_action_info.items():
self.env.set_actions(brain_name, action_info.env_action)
self.env.step()
all_step_result = self._generate_all_results()
step_info = EnvironmentStep(
all_step_result, 0, self.previous_all_action_info, {}
)
self.previous_step = step_info
return [step_info]
def _reset_env(
self, config: Dict[BehaviorName, float] = None
) -> List[EnvironmentStep]: # type: ignore
self.set_env_parameters(config)
self.env.reset()
all_step_result = self._generate_all_results()
self.previous_step = EnvironmentStep(all_step_result, 0, {}, {})
return [self.previous_step]
def set_env_parameters(self, config: Dict = None) -> None:
"""
Sends environment parameter settings to C# via the
EnvironmentParametersSidehannel.
:param config: Dict of environment parameter keys and values
"""
if config is not None:
for k, v in config.items():
if isinstance(v, float):
self.env_params.set_float_parameter(k, v)
elif isinstance(v, ParameterRandomizationSettings):
v.apply(k, self.env_params)
@property
def training_behaviors(self) -> Dict[BehaviorName, BehaviorSpec]:
return self.env.behavior_specs
def close(self):
self.env.close()
@timed
def _take_step(self, last_step: EnvironmentStep) -> Dict[BehaviorName, ActionInfo]:
all_action_info: Dict[str, ActionInfo] = {}
for brain_name, step_tuple in last_step.current_all_step_result.items():
all_action_info[brain_name] = self.policies[brain_name].get_action(
step_tuple[0],
0, # As there is only one worker, we assign the worker_id to 0.
)
return all_action_info
def _generate_all_results(self) -> AllStepResult:
all_step_result: AllStepResult = {}
for brain_name in self.env.behavior_specs:
all_step_result[brain_name] = self.env.get_steps(brain_name)
return all_step_result