您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
185 行
7.1 KiB
185 行
7.1 KiB
from typing import Dict, cast
|
|
from mlagents.torch_utils import torch, default_device
|
|
|
|
from mlagents.trainers.buffer import AgentBuffer, BufferKey, RewardSignalUtil
|
|
|
|
from mlagents_envs.timers import timed
|
|
from mlagents.trainers.policy.torch_policy import TorchPolicy
|
|
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer
|
|
from mlagents.trainers.settings import TrainerSettings, PPOSettings
|
|
from mlagents.trainers.torch.networks import ValueNetwork
|
|
from mlagents.trainers.torch.agent_action import AgentAction
|
|
from mlagents.trainers.torch.action_log_probs import ActionLogProbs
|
|
from mlagents.trainers.torch.utils import ModelUtils
|
|
from mlagents.trainers.trajectory import ObsUtil
|
|
|
|
|
|
class TorchPPOOptimizer(TorchOptimizer):
|
|
def __init__(self, policy: TorchPolicy, trainer_settings: TrainerSettings):
|
|
"""
|
|
Takes a Policy and a Dict of trainer parameters and creates an Optimizer around the policy.
|
|
The PPO optimizer has a value estimator and a loss function.
|
|
:param policy: A TorchPolicy object that will be updated by this PPO Optimizer.
|
|
:param trainer_params: Trainer parameters dictionary that specifies the
|
|
properties of the trainer.
|
|
"""
|
|
# Create the graph here to give more granular control of the TF graph to the Optimizer.
|
|
|
|
super().__init__(policy, trainer_settings)
|
|
reward_signal_configs = trainer_settings.reward_signals
|
|
reward_signal_names = [key.value for key, _ in reward_signal_configs.items()]
|
|
|
|
if policy.shared_critic:
|
|
self._critic = policy.actor
|
|
else:
|
|
self._critic = ValueNetwork(
|
|
reward_signal_names,
|
|
policy.behavior_spec.observation_specs,
|
|
network_settings=trainer_settings.network_settings,
|
|
)
|
|
self._critic.to(default_device())
|
|
|
|
params = list(self.policy.actor.parameters()) + list(self._critic.parameters())
|
|
self.hyperparameters: PPOSettings = cast(
|
|
PPOSettings, trainer_settings.hyperparameters
|
|
)
|
|
self.decay_learning_rate = ModelUtils.DecayedValue(
|
|
self.hyperparameters.learning_rate_schedule,
|
|
self.hyperparameters.learning_rate,
|
|
1e-10,
|
|
self.trainer_settings.max_steps,
|
|
)
|
|
self.decay_epsilon = ModelUtils.DecayedValue(
|
|
self.hyperparameters.learning_rate_schedule,
|
|
self.hyperparameters.epsilon,
|
|
0.1,
|
|
self.trainer_settings.max_steps,
|
|
)
|
|
self.decay_beta = ModelUtils.DecayedValue(
|
|
self.hyperparameters.learning_rate_schedule,
|
|
self.hyperparameters.beta,
|
|
1e-5,
|
|
self.trainer_settings.max_steps,
|
|
)
|
|
|
|
self.optimizer = torch.optim.Adam(
|
|
params, lr=self.trainer_settings.hyperparameters.learning_rate
|
|
)
|
|
self.stats_name_to_update_name = {
|
|
"Losses/Value Loss": "value_loss",
|
|
"Losses/Policy Loss": "policy_loss",
|
|
}
|
|
|
|
self.stream_names = list(self.reward_signals.keys())
|
|
|
|
@property
|
|
def critic(self):
|
|
return self._critic
|
|
|
|
@timed
|
|
def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]:
|
|
"""
|
|
Performs update on model.
|
|
:param batch: Batch of experiences.
|
|
:param num_sequences: Number of sequences to process.
|
|
:return: Results of update.
|
|
"""
|
|
# Get decayed parameters
|
|
decay_lr = self.decay_learning_rate.get_value(self.policy.get_current_step())
|
|
decay_eps = self.decay_epsilon.get_value(self.policy.get_current_step())
|
|
decay_bet = self.decay_beta.get_value(self.policy.get_current_step())
|
|
returns = {}
|
|
old_values = {}
|
|
for name in self.reward_signals:
|
|
old_values[name] = ModelUtils.list_to_tensor(
|
|
batch[RewardSignalUtil.value_estimates_key(name)]
|
|
)
|
|
returns[name] = ModelUtils.list_to_tensor(
|
|
batch[RewardSignalUtil.returns_key(name)]
|
|
)
|
|
|
|
n_obs = len(self.policy.behavior_spec.observation_specs)
|
|
current_obs = ObsUtil.from_buffer(batch, n_obs)
|
|
# Convert to tensors
|
|
current_obs = [ModelUtils.list_to_tensor(obs) for obs in current_obs]
|
|
|
|
act_masks = ModelUtils.list_to_tensor(batch[BufferKey.ACTION_MASK])
|
|
actions = AgentAction.from_buffer(batch)
|
|
|
|
memories = [
|
|
ModelUtils.list_to_tensor(batch[BufferKey.MEMORY][i])
|
|
for i in range(0, len(batch[BufferKey.MEMORY]), self.policy.sequence_length)
|
|
]
|
|
if len(memories) > 0:
|
|
memories = torch.stack(memories).unsqueeze(0)
|
|
|
|
# Get value memories
|
|
value_memories = [
|
|
ModelUtils.list_to_tensor(batch[BufferKey.CRITIC_MEMORY][i])
|
|
for i in range(
|
|
0, len(batch[BufferKey.CRITIC_MEMORY]), self.policy.sequence_length
|
|
)
|
|
]
|
|
if len(value_memories) > 0:
|
|
value_memories = torch.stack(value_memories).unsqueeze(0)
|
|
|
|
log_probs, entropy = self.policy.evaluate_actions(
|
|
current_obs,
|
|
masks=act_masks,
|
|
actions=actions,
|
|
memories=memories,
|
|
seq_len=self.policy.sequence_length,
|
|
)
|
|
values, _ = self.critic.critic_pass(
|
|
current_obs,
|
|
memories=value_memories,
|
|
sequence_length=self.policy.sequence_length,
|
|
)
|
|
old_log_probs = ActionLogProbs.from_buffer(batch).flatten()
|
|
log_probs = log_probs.flatten()
|
|
loss_masks = ModelUtils.list_to_tensor(batch[BufferKey.MASKS], dtype=torch.bool)
|
|
value_loss = ModelUtils.trust_region_value_loss(
|
|
values, old_values, returns, decay_eps, loss_masks
|
|
)
|
|
policy_loss = ModelUtils.trust_region_policy_loss(
|
|
ModelUtils.list_to_tensor(batch[BufferKey.ADVANTAGES]),
|
|
log_probs,
|
|
old_log_probs,
|
|
loss_masks,
|
|
decay_eps,
|
|
)
|
|
loss = (
|
|
policy_loss
|
|
+ 0.5 * value_loss
|
|
- decay_bet * ModelUtils.masked_mean(entropy, loss_masks)
|
|
)
|
|
|
|
# Set optimizer learning rate
|
|
ModelUtils.update_learning_rate(self.optimizer, decay_lr)
|
|
self.optimizer.zero_grad()
|
|
loss.backward()
|
|
|
|
self.optimizer.step()
|
|
update_stats = {
|
|
# NOTE: abs() is not technically correct, but matches the behavior in TensorFlow.
|
|
# TODO: After PyTorch is default, change to something more correct.
|
|
"Losses/Policy Loss": torch.abs(policy_loss).item(),
|
|
"Losses/Value Loss": value_loss.item(),
|
|
"Policy/Learning Rate": decay_lr,
|
|
"Policy/Epsilon": decay_eps,
|
|
"Policy/Beta": decay_bet,
|
|
}
|
|
|
|
for reward_provider in self.reward_signals.values():
|
|
update_stats.update(reward_provider.update(batch))
|
|
|
|
return update_stats
|
|
|
|
def get_modules(self):
|
|
modules = {
|
|
"Optimizer:value_optimizer": self.optimizer,
|
|
"Optimizer:critic": self._critic,
|
|
}
|
|
for reward_provider in self.reward_signals.values():
|
|
modules.update(reward_provider.get_modules())
|
|
return modules
|