Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

174 行
5.6 KiB

using Barracuda;
using System;
using UnityEngine;
using UnityEngine.Serialization;
namespace MLAgents.Policies
{
/// <summary>
/// Defines what type of behavior the Agent will be using
/// </summary>
[Serializable]
public enum BehaviorType
{
/// <summary>
/// The Agent will use the remote process for decision making.
/// if unavailable, will use inference and if no model is provided, will use
/// the heuristic.
/// </summary>
Default,
/// <summary>
/// The Agent will always use its heuristic
/// </summary>
HeuristicOnly,
/// <summary>
/// The Agent will always use inference with the provided
/// neural network model.
/// </summary>
InferenceOnly
}
/// <summary>
/// The Factory to generate policies.
/// </summary>
[AddComponentMenu("ML Agents/Behavior Parameters", (int)MenuGroup.Default)]
public class BehaviorParameters : MonoBehaviour
{
[HideInInspector, SerializeField]
BrainParameters m_BrainParameters = new BrainParameters();
/// <summary>
/// The associated <see cref="BrainParameters"/> for this behavior.
/// </summary>
public BrainParameters brainParameters
{
get { return m_BrainParameters; }
internal set { m_BrainParameters = value; }
}
[HideInInspector, SerializeField]
NNModel m_Model;
/// <summary>
/// The neural network model used when in inference mode.
/// This should not be set at runtime; use <see cref="Agent.SetModel(string,NNModel,InferenceDevice)"/>
/// to set it instead.
/// </summary>
public NNModel model
{
get { return m_Model; }
set { m_Model = value; UpdateAgentPolicy(); }
}
[HideInInspector, SerializeField]
InferenceDevice m_InferenceDevice;
/// <summary>
/// How inference is performed for this Agent's model.
/// This should not be set at runtime; use <see cref="Agent.SetModel(string,NNModel,InferenceDevice)"/>
/// to set it instead.
/// </summary>
public InferenceDevice inferenceDevice
{
get { return m_InferenceDevice; }
set { m_InferenceDevice = value; UpdateAgentPolicy();}
}
[HideInInspector, SerializeField]
BehaviorType m_BehaviorType;
/// <summary>
/// The BehaviorType for the Agent.
/// </summary>
public BehaviorType behaviorType
{
get { return m_BehaviorType; }
set { m_BehaviorType = value; UpdateAgentPolicy(); }
}
[HideInInspector, SerializeField]
string m_BehaviorName = "My Behavior";
/// <summary>
/// The name of this behavior, which is used as a base name. See
/// <see cref="fullyQualifiedBehaviorName"/> for the full name.
/// This should not be set at runtime; use <see cref="Agent.SetModel(string,NNModel,InferenceDevice)"/>
/// to set it instead.
/// </summary>
public string behaviorName
{
get { return m_BehaviorName; }
set { m_BehaviorName = value; UpdateAgentPolicy(); }
}
/// <summary>
/// The team ID for this behavior.
/// </summary>
[HideInInspector, SerializeField, FormerlySerializedAs("m_TeamID")]
public int TeamId;
// TODO properties here instead of Agent
[FormerlySerializedAs("m_useChildSensors")]
[HideInInspector]
[SerializeField]
[Tooltip("Use all Sensor components attached to child GameObjects of this Agent.")]
bool m_UseChildSensors = true;
/// <summary>
/// Whether or not to use all the sensor components attached to child GameObjects of the agent.
/// Note that changing this after the Agent has been initialized will not have any effect.
/// </summary>
public bool useChildSensors
{
get { return m_UseChildSensors; }
set { m_UseChildSensors = value; }
}
/// <summary>
/// Returns the behavior name, concatenated with any other metadata (i.e. team id).
/// </summary>
public string fullyQualifiedBehaviorName
{
get { return m_BehaviorName + "?team=" + TeamId; }
}
internal IPolicy GeneratePolicy(Func<float[]> heuristic)
{
switch (m_BehaviorType)
{
case BehaviorType.HeuristicOnly:
return new HeuristicPolicy(heuristic);
case BehaviorType.InferenceOnly:
return new BarracudaPolicy(m_BrainParameters, m_Model, m_InferenceDevice);
case BehaviorType.Default:
if (Academy.Instance.IsCommunicatorOn)
{
return new RemotePolicy(m_BrainParameters, fullyQualifiedBehaviorName);
}
if (m_Model != null)
{
return new BarracudaPolicy(m_BrainParameters, m_Model, m_InferenceDevice);
}
else
{
return new HeuristicPolicy(heuristic);
}
default:
return new HeuristicPolicy(heuristic);
}
}
internal void UpdateAgentPolicy()
{
var agent = GetComponent<Agent>();
if (agent == null)
{
return;
}
agent.ReloadPolicy();
}
}
}