您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
234 行
7.7 KiB
234 行
7.7 KiB
import pytest
|
|
import os
|
|
from typing import Dict, Any
|
|
|
|
import numpy as np
|
|
from mlagents.tf_utils import tf
|
|
|
|
import yaml
|
|
|
|
from mlagents.trainers.policy.nn_policy import NNPolicy
|
|
from mlagents.trainers.models import EncoderType, ModelUtils
|
|
from mlagents.trainers.exception import UnityTrainerException
|
|
from mlagents.trainers.brain import BrainParameters, CameraResolution
|
|
from mlagents.trainers.tests import mock_brain as mb
|
|
from mlagents.trainers.tests.test_trajectory import make_fake_trajectory
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_config():
|
|
return yaml.safe_load(
|
|
"""
|
|
trainer: ppo
|
|
batch_size: 32
|
|
beta: 5.0e-3
|
|
buffer_size: 512
|
|
epsilon: 0.2
|
|
hidden_units: 128
|
|
lambd: 0.95
|
|
learning_rate: 3.0e-4
|
|
max_steps: 5.0e4
|
|
normalize: true
|
|
num_epoch: 5
|
|
num_layers: 2
|
|
time_horizon: 64
|
|
sequence_length: 64
|
|
summary_freq: 1000
|
|
use_recurrent: false
|
|
normalize: true
|
|
memory_size: 8
|
|
curiosity_strength: 0.0
|
|
curiosity_enc_size: 1
|
|
summary_path: test
|
|
model_path: test
|
|
reward_signals:
|
|
extrinsic:
|
|
strength: 1.0
|
|
gamma: 0.99
|
|
"""
|
|
)
|
|
|
|
|
|
VECTOR_ACTION_SPACE = [2]
|
|
VECTOR_OBS_SPACE = 8
|
|
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
|
|
BUFFER_INIT_SAMPLES = 32
|
|
NUM_AGENTS = 12
|
|
|
|
|
|
def create_policy_mock(
|
|
dummy_config: Dict[str, Any],
|
|
use_rnn: bool = False,
|
|
use_discrete: bool = True,
|
|
use_visual: bool = False,
|
|
load: bool = False,
|
|
seed: int = 0,
|
|
) -> NNPolicy:
|
|
mock_brain = mb.setup_mock_brain(
|
|
use_discrete,
|
|
use_visual,
|
|
vector_action_space=VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE,
|
|
discrete_action_space=DISCRETE_ACTION_SPACE,
|
|
)
|
|
|
|
trainer_parameters = dummy_config
|
|
trainer_parameters["keep_checkpoints"] = 3
|
|
trainer_parameters["use_recurrent"] = use_rnn
|
|
policy = NNPolicy(seed, mock_brain, trainer_parameters, False, load)
|
|
return policy
|
|
|
|
|
|
def test_load_save(dummy_config, tmp_path):
|
|
path1 = os.path.join(tmp_path, "runid1")
|
|
path2 = os.path.join(tmp_path, "runid2")
|
|
trainer_params = dummy_config
|
|
trainer_params["model_path"] = path1
|
|
policy = create_policy_mock(trainer_params)
|
|
policy.initialize_or_load()
|
|
policy.save_model(2000)
|
|
|
|
assert len(os.listdir(tmp_path)) > 0
|
|
|
|
# Try load from this path
|
|
policy2 = create_policy_mock(trainer_params, load=True, seed=1)
|
|
policy2.initialize_or_load()
|
|
_compare_two_policies(policy, policy2)
|
|
|
|
# Try initialize from path 1
|
|
trainer_params["model_path"] = path2
|
|
trainer_params["init_path"] = path1
|
|
policy3 = create_policy_mock(trainer_params, load=False, seed=2)
|
|
policy3.initialize_or_load()
|
|
|
|
_compare_two_policies(policy2, policy3)
|
|
|
|
|
|
def _compare_two_policies(policy1: NNPolicy, policy2: NNPolicy) -> None:
|
|
"""
|
|
Make sure two policies have the same output for the same input.
|
|
"""
|
|
decision_step, _ = mb.create_steps_from_brainparams(policy1.brain, num_agents=1)
|
|
run_out1 = policy1.evaluate(decision_step, list(decision_step.agent_id))
|
|
run_out2 = policy2.evaluate(decision_step, list(decision_step.agent_id))
|
|
|
|
np.testing.assert_array_equal(run_out2["log_probs"], run_out1["log_probs"])
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
|
|
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
|
|
def test_policy_evaluate(dummy_config, rnn, visual, discrete):
|
|
# Test evaluate
|
|
tf.reset_default_graph()
|
|
policy = create_policy_mock(
|
|
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual
|
|
)
|
|
decision_step, terminal_step = mb.create_steps_from_brainparams(
|
|
policy.brain, num_agents=NUM_AGENTS
|
|
)
|
|
|
|
run_out = policy.evaluate(decision_step, list(decision_step.agent_id))
|
|
if discrete:
|
|
run_out["action"].shape == (NUM_AGENTS, len(DISCRETE_ACTION_SPACE))
|
|
else:
|
|
assert run_out["action"].shape == (NUM_AGENTS, VECTOR_ACTION_SPACE[0])
|
|
|
|
|
|
def test_normalization(dummy_config):
|
|
brain_params = BrainParameters(
|
|
brain_name="test_brain",
|
|
vector_observation_space_size=1,
|
|
camera_resolutions=[],
|
|
vector_action_space_size=[2],
|
|
vector_action_descriptions=[],
|
|
vector_action_space_type=0,
|
|
)
|
|
dummy_config["summary_path"] = "./summaries/test_trainer_summary"
|
|
dummy_config["model_path"] = "./models/test_trainer_models/TestModel"
|
|
|
|
time_horizon = 6
|
|
trajectory = make_fake_trajectory(
|
|
length=time_horizon,
|
|
max_step_complete=True,
|
|
vec_obs_size=1,
|
|
num_vis_obs=0,
|
|
action_space=[2],
|
|
)
|
|
# Change half of the obs to 0
|
|
for i in range(3):
|
|
trajectory.steps[i].obs[0] = np.zeros(1, dtype=np.float32)
|
|
policy = policy = NNPolicy(0, brain_params, dummy_config, False, False)
|
|
|
|
trajectory_buffer = trajectory.to_agentbuffer()
|
|
policy.update_normalization(trajectory_buffer["vector_obs"])
|
|
|
|
# Check that the running mean and variance is correct
|
|
steps, mean, variance = policy.sess.run(
|
|
[policy.normalization_steps, policy.running_mean, policy.running_variance]
|
|
)
|
|
|
|
assert steps == 6
|
|
assert mean[0] == 0.5
|
|
# Note: variance is divided by number of steps, and initialized to 1 to avoid
|
|
# divide by 0. The right answer is 0.25
|
|
assert (variance[0] - 1) / steps == 0.25
|
|
|
|
# Make another update, this time with all 1's
|
|
time_horizon = 10
|
|
trajectory = make_fake_trajectory(
|
|
length=time_horizon,
|
|
max_step_complete=True,
|
|
vec_obs_size=1,
|
|
num_vis_obs=0,
|
|
action_space=[2],
|
|
)
|
|
trajectory_buffer = trajectory.to_agentbuffer()
|
|
policy.update_normalization(trajectory_buffer["vector_obs"])
|
|
|
|
# Check that the running mean and variance is correct
|
|
steps, mean, variance = policy.sess.run(
|
|
[policy.normalization_steps, policy.running_mean, policy.running_variance]
|
|
)
|
|
|
|
assert steps == 16
|
|
assert mean[0] == 0.8125
|
|
assert (variance[0] - 1) / steps == pytest.approx(0.152, abs=0.01)
|
|
|
|
|
|
def test_min_visual_size():
|
|
# Make sure each EncoderType has an entry in MIS_RESOLUTION_FOR_ENCODER
|
|
assert set(ModelUtils.MIN_RESOLUTION_FOR_ENCODER.keys()) == set(EncoderType)
|
|
|
|
for encoder_type in EncoderType:
|
|
with tf.Graph().as_default():
|
|
good_size = ModelUtils.MIN_RESOLUTION_FOR_ENCODER[encoder_type]
|
|
good_res = CameraResolution(
|
|
width=good_size, height=good_size, num_channels=3
|
|
)
|
|
vis_input = ModelUtils.create_visual_input(good_res, "test_min_visual_size")
|
|
ModelUtils._check_resolution_for_encoder(vis_input, encoder_type)
|
|
enc_func = ModelUtils.get_encoder_for_type(encoder_type)
|
|
enc_func(vis_input, 32, ModelUtils.swish, 1, "test", False)
|
|
|
|
# Anything under the min size should raise an exception. If not, decrease the min size!
|
|
with pytest.raises(Exception):
|
|
with tf.Graph().as_default():
|
|
bad_size = ModelUtils.MIN_RESOLUTION_FOR_ENCODER[encoder_type] - 1
|
|
bad_res = CameraResolution(
|
|
width=bad_size, height=bad_size, num_channels=3
|
|
)
|
|
vis_input = ModelUtils.create_visual_input(
|
|
bad_res, "test_min_visual_size"
|
|
)
|
|
|
|
with pytest.raises(UnityTrainerException):
|
|
# Make sure we'd hit a friendly error during model setup time.
|
|
ModelUtils._check_resolution_for_encoder(vis_input, encoder_type)
|
|
|
|
enc_func = ModelUtils.get_encoder_for_type(encoder_type)
|
|
enc_func(vis_input, 32, ModelUtils.swish, 1, "test", False)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main()
|