您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
374 行
14 KiB
374 行
14 KiB
from mlagents_envs.base_env import (
|
|
ActionSpec,
|
|
SensorSpec,
|
|
DimensionProperty,
|
|
BehaviorSpec,
|
|
DecisionSteps,
|
|
TerminalSteps,
|
|
)
|
|
from mlagents_envs.exception import UnityObservationException
|
|
from mlagents_envs.timers import hierarchical_timer, timed
|
|
from mlagents_envs.communicator_objects.agent_info_pb2 import AgentInfoProto
|
|
from mlagents_envs.communicator_objects.observation_pb2 import (
|
|
ObservationProto,
|
|
NONE as COMPRESSION_TYPE_NONE,
|
|
)
|
|
from mlagents_envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
|
|
import numpy as np
|
|
import io
|
|
from typing import cast, List, Tuple, Collection, Optional, Iterable
|
|
from PIL import Image
|
|
|
|
|
|
PNG_HEADER = b"\x89PNG\r\n\x1a\n"
|
|
|
|
|
|
def behavior_spec_from_proto(
|
|
brain_param_proto: BrainParametersProto, agent_info: AgentInfoProto
|
|
) -> BehaviorSpec:
|
|
"""
|
|
Converts brain parameter and agent info proto to BehaviorSpec object.
|
|
:param brain_param_proto: protobuf object.
|
|
:param agent_info: protobuf object.
|
|
:return: BehaviorSpec object.
|
|
"""
|
|
observation_shape = [tuple(obs.shape) for obs in agent_info.observations]
|
|
dim_props = [
|
|
tuple(DimensionProperty(dim) for dim in obs.dimension_properties)
|
|
for obs in agent_info.observations
|
|
]
|
|
sensor_types = [obs.sensor_type for obs in agent_info.observations]
|
|
sensor_specs = [
|
|
SensorSpec(obs_shape, dim_p, sensor_type)
|
|
for obs_shape, dim_p, sensor_type in zip(observation_shape, dim_props, sensor_types)
|
|
]
|
|
# proto from communicator < v1.3 does not set action spec, use deprecated fields instead
|
|
if (
|
|
brain_param_proto.action_spec.num_continuous_actions == 0
|
|
and brain_param_proto.action_spec.num_discrete_actions == 0
|
|
):
|
|
if brain_param_proto.vector_action_space_type_deprecated == 1:
|
|
action_spec = ActionSpec(
|
|
brain_param_proto.vector_action_size_deprecated[0], ()
|
|
)
|
|
else:
|
|
action_spec = ActionSpec(
|
|
0, tuple(brain_param_proto.vector_action_size_deprecated)
|
|
)
|
|
else:
|
|
action_spec_proto = brain_param_proto.action_spec
|
|
action_spec = ActionSpec(
|
|
action_spec_proto.num_continuous_actions,
|
|
tuple(branch for branch in action_spec_proto.discrete_branch_sizes),
|
|
)
|
|
return BehaviorSpec(sensor_specs, action_spec)
|
|
|
|
|
|
class OffsetBytesIO:
|
|
"""
|
|
Simple file-like class that wraps a bytes, and allows moving its "start"
|
|
position in the bytes. This is only used for reading concatenated PNGs,
|
|
because Pillow always calls seek(0) at the start of reading.
|
|
"""
|
|
|
|
__slots__ = ["fp", "offset"]
|
|
|
|
def __init__(self, data: bytes):
|
|
self.fp = io.BytesIO(data)
|
|
self.offset = 0
|
|
|
|
def seek(self, offset: int, whence: int = io.SEEK_SET) -> int:
|
|
if whence == io.SEEK_SET:
|
|
res = self.fp.seek(offset + self.offset)
|
|
return res - self.offset
|
|
raise NotImplementedError()
|
|
|
|
def tell(self) -> int:
|
|
return self.fp.tell() - self.offset
|
|
|
|
def read(self, size: int = -1) -> bytes:
|
|
return self.fp.read(size)
|
|
|
|
def original_tell(self) -> int:
|
|
"""
|
|
Returns the offset into the original byte array
|
|
"""
|
|
return self.fp.tell()
|
|
|
|
|
|
@timed
|
|
def process_pixels(
|
|
image_bytes: bytes, expected_channels: int, mappings: Optional[List[int]] = None
|
|
) -> np.ndarray:
|
|
"""
|
|
Converts byte array observation image into numpy array, re-sizes it,
|
|
and optionally converts it to grey scale
|
|
:param image_bytes: input byte array corresponding to image
|
|
:param expected_channels: Expected output channels
|
|
:return: processed numpy array of observation from environment
|
|
"""
|
|
image_fp = OffsetBytesIO(image_bytes)
|
|
|
|
image_arrays = []
|
|
# Read the images back from the bytes (without knowing the sizes).
|
|
while True:
|
|
with hierarchical_timer("image_decompress"):
|
|
image = Image.open(image_fp)
|
|
# Normally Image loads lazily, load() forces it to do loading in the timer scope.
|
|
image.load()
|
|
image_arrays.append(np.array(image, dtype=np.float32) / 255.0)
|
|
|
|
# Look for the next header, starting from the current stream location
|
|
try:
|
|
new_offset = image_bytes.index(PNG_HEADER, image_fp.original_tell())
|
|
image_fp.offset = new_offset
|
|
except ValueError:
|
|
# Didn't find the header, so must be at the end.
|
|
break
|
|
|
|
if mappings is not None and len(mappings) > 0:
|
|
return _process_images_mapping(image_arrays, mappings)
|
|
else:
|
|
return _process_images_num_channels(image_arrays, expected_channels)
|
|
|
|
|
|
def _process_images_mapping(image_arrays, mappings):
|
|
"""
|
|
Helper function for processing decompressed images with compressed channel mappings.
|
|
"""
|
|
image_arrays = np.concatenate(image_arrays, axis=2).transpose((2, 0, 1))
|
|
|
|
if len(mappings) != len(image_arrays):
|
|
raise UnityObservationException(
|
|
f"Compressed observation and its mapping had different number of channels - "
|
|
f"observation had {len(image_arrays)} channels but its mapping had {len(mappings)} channels"
|
|
)
|
|
if len({m for m in mappings if m > -1}) != max(mappings) + 1:
|
|
raise UnityObservationException(
|
|
f"Invalid Compressed Channel Mapping: the mapping {mappings} does not have the correct format."
|
|
)
|
|
if max(mappings) >= len(image_arrays):
|
|
raise UnityObservationException(
|
|
f"Invalid Compressed Channel Mapping: the mapping has index larger than the total "
|
|
f"number of channels in observation - mapping index {max(mappings)} is"
|
|
f"invalid for input observation with {len(image_arrays)} channels."
|
|
)
|
|
|
|
processed_image_arrays: List[np.array] = [[] for _ in range(max(mappings) + 1)]
|
|
for mapping_idx, img in zip(mappings, image_arrays):
|
|
if mapping_idx > -1:
|
|
processed_image_arrays[mapping_idx].append(img)
|
|
|
|
for i, img_array in enumerate(processed_image_arrays):
|
|
processed_image_arrays[i] = np.mean(img_array, axis=0)
|
|
img = np.stack(processed_image_arrays, axis=2)
|
|
return img
|
|
|
|
|
|
def _process_images_num_channels(image_arrays, expected_channels):
|
|
"""
|
|
Helper function for processing decompressed images with number of expected channels.
|
|
This is for old API without mapping provided. Use the first n channel, n=expected_channels.
|
|
"""
|
|
if expected_channels == 1:
|
|
# Convert to grayscale
|
|
img = np.mean(image_arrays[0], axis=2)
|
|
img = np.reshape(img, [img.shape[0], img.shape[1], 1])
|
|
else:
|
|
img = np.concatenate(image_arrays, axis=2)
|
|
# We can drop additional channels since they may need to be added to include
|
|
# numbers of observation channels not divisible by 3.
|
|
actual_channels = list(img.shape)[2]
|
|
if actual_channels > expected_channels:
|
|
img = img[..., 0:expected_channels]
|
|
return img
|
|
|
|
|
|
@timed
|
|
def observation_to_np_array(
|
|
obs: ObservationProto, expected_shape: Optional[Iterable[int]] = None
|
|
) -> np.ndarray:
|
|
"""
|
|
Converts observation proto into numpy array of the appropriate size.
|
|
:param obs: observation proto to be converted
|
|
:param expected_shape: optional shape information, used for sanity checks.
|
|
:return: processed numpy array of observation from environment
|
|
"""
|
|
if expected_shape is not None:
|
|
if list(obs.shape) != list(expected_shape):
|
|
raise UnityObservationException(
|
|
f"Observation did not have the expected shape - got {obs.shape} but expected {expected_shape}"
|
|
)
|
|
expected_channels = obs.shape[2]
|
|
if obs.compression_type == COMPRESSION_TYPE_NONE:
|
|
img = np.array(obs.float_data.data, dtype=np.float32)
|
|
img = np.reshape(img, obs.shape)
|
|
return img
|
|
else:
|
|
img = process_pixels(
|
|
obs.compressed_data, expected_channels, list(obs.compressed_channel_mapping)
|
|
)
|
|
# Compare decompressed image size to observation shape and make sure they match
|
|
if list(obs.shape) != list(img.shape):
|
|
raise UnityObservationException(
|
|
f"Decompressed observation did not have the expected shape - "
|
|
f"decompressed had {img.shape} but expected {obs.shape}"
|
|
)
|
|
return img
|
|
|
|
|
|
@timed
|
|
def _process_visual_observation(
|
|
obs_index: int,
|
|
shape: Tuple[int, int, int],
|
|
agent_info_list: Collection[
|
|
AgentInfoProto
|
|
], # pylint: disable=unsubscriptable-object
|
|
) -> np.ndarray:
|
|
if len(agent_info_list) == 0:
|
|
return np.zeros((0, shape[0], shape[1], shape[2]), dtype=np.float32)
|
|
|
|
batched_visual = [
|
|
observation_to_np_array(agent_obs.observations[obs_index], shape)
|
|
for agent_obs in agent_info_list
|
|
]
|
|
return np.array(batched_visual, dtype=np.float32)
|
|
|
|
|
|
def _raise_on_nan_and_inf(data: np.array, source: str) -> np.array:
|
|
# Check for NaNs or Infinite values in the observation or reward data.
|
|
# If there's a NaN in the observations, the np.mean() result will be NaN
|
|
# If there's an Infinite value (either sign) then the result will be Inf
|
|
# See https://stackoverflow.com/questions/6736590/fast-check-for-nan-in-numpy for background
|
|
# Note that a very large values (larger than sqrt(float_max)) will result in an Inf value here
|
|
# Raise a Runtime error in the case that NaNs or Infinite values make it into the data.
|
|
if data.size == 0:
|
|
return data
|
|
|
|
d = np.mean(data)
|
|
has_nan = np.isnan(d)
|
|
has_inf = not np.isfinite(d)
|
|
|
|
if has_nan:
|
|
raise RuntimeError(f"The {source} provided had NaN values.")
|
|
if has_inf:
|
|
raise RuntimeError(f"The {source} provided had Infinite values.")
|
|
|
|
|
|
@timed
|
|
def _process_vector_observation(
|
|
obs_index: int,
|
|
shape: Tuple[int, ...],
|
|
agent_info_list: Collection[
|
|
AgentInfoProto
|
|
], # pylint: disable=unsubscriptable-object
|
|
) -> np.ndarray:
|
|
if len(agent_info_list) == 0:
|
|
return np.zeros((0,) + shape, dtype=np.float32)
|
|
np_obs = np.array(
|
|
[
|
|
agent_obs.observations[obs_index].float_data.data
|
|
for agent_obs in agent_info_list
|
|
],
|
|
dtype=np.float32,
|
|
).reshape((len(agent_info_list),) + shape)
|
|
_raise_on_nan_and_inf(np_obs, "observations")
|
|
return np_obs
|
|
|
|
|
|
@timed
|
|
def steps_from_proto(
|
|
agent_info_list: Collection[
|
|
AgentInfoProto
|
|
], # pylint: disable=unsubscriptable-object
|
|
behavior_spec: BehaviorSpec,
|
|
) -> Tuple[DecisionSteps, TerminalSteps]:
|
|
decision_agent_info_list = [
|
|
agent_info for agent_info in agent_info_list if not agent_info.done
|
|
]
|
|
terminal_agent_info_list = [
|
|
agent_info for agent_info in agent_info_list if agent_info.done
|
|
]
|
|
decision_obs_list: List[np.ndarray] = []
|
|
terminal_obs_list: List[np.ndarray] = []
|
|
for obs_index, sensor_specs in enumerate(behavior_spec.sensor_specs):
|
|
is_visual = len(sensor_specs.shape) == 3
|
|
if is_visual:
|
|
obs_shape = cast(Tuple[int, int, int], sensor_specs.shape)
|
|
decision_obs_list.append(
|
|
_process_visual_observation(
|
|
obs_index, obs_shape, decision_agent_info_list
|
|
)
|
|
)
|
|
terminal_obs_list.append(
|
|
_process_visual_observation(
|
|
obs_index, obs_shape, terminal_agent_info_list
|
|
)
|
|
)
|
|
else:
|
|
decision_obs_list.append(
|
|
_process_vector_observation(
|
|
obs_index, sensor_specs.shape, decision_agent_info_list
|
|
)
|
|
)
|
|
terminal_obs_list.append(
|
|
_process_vector_observation(
|
|
obs_index, sensor_specs.shape, terminal_agent_info_list
|
|
)
|
|
)
|
|
decision_rewards = np.array(
|
|
[agent_info.reward for agent_info in decision_agent_info_list], dtype=np.float32
|
|
)
|
|
terminal_rewards = np.array(
|
|
[agent_info.reward for agent_info in terminal_agent_info_list], dtype=np.float32
|
|
)
|
|
|
|
_raise_on_nan_and_inf(decision_rewards, "rewards")
|
|
_raise_on_nan_and_inf(terminal_rewards, "rewards")
|
|
|
|
max_step = np.array(
|
|
[agent_info.max_step_reached for agent_info in terminal_agent_info_list],
|
|
dtype=np.bool,
|
|
)
|
|
decision_agent_id = np.array(
|
|
[agent_info.id for agent_info in decision_agent_info_list], dtype=np.int32
|
|
)
|
|
terminal_agent_id = np.array(
|
|
[agent_info.id for agent_info in terminal_agent_info_list], dtype=np.int32
|
|
)
|
|
action_mask = None
|
|
if behavior_spec.action_spec.discrete_size > 0:
|
|
if any(
|
|
[agent_info.action_mask is not None]
|
|
for agent_info in decision_agent_info_list
|
|
):
|
|
n_agents = len(decision_agent_info_list)
|
|
a_size = np.sum(behavior_spec.action_spec.discrete_branches)
|
|
mask_matrix = np.ones((n_agents, a_size), dtype=np.bool)
|
|
for agent_index, agent_info in enumerate(decision_agent_info_list):
|
|
if agent_info.action_mask is not None:
|
|
if len(agent_info.action_mask) == a_size:
|
|
mask_matrix[agent_index, :] = [
|
|
False if agent_info.action_mask[k] else True
|
|
for k in range(a_size)
|
|
]
|
|
action_mask = (1 - mask_matrix).astype(np.bool)
|
|
indices = _generate_split_indices(
|
|
behavior_spec.action_spec.discrete_branches
|
|
)
|
|
action_mask = np.split(action_mask, indices, axis=1)
|
|
return (
|
|
DecisionSteps(
|
|
decision_obs_list, decision_rewards, decision_agent_id, action_mask
|
|
),
|
|
TerminalSteps(terminal_obs_list, terminal_rewards, max_step, terminal_agent_id),
|
|
)
|
|
|
|
|
|
def _generate_split_indices(dims):
|
|
if len(dims) <= 1:
|
|
return ()
|
|
result = (dims[0],)
|
|
for i in range(len(dims) - 2):
|
|
result += (dims[i + 1] + result[i],)
|
|
return result
|