您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
316 行
13 KiB
316 行
13 KiB
# # Unity ML-Agents Toolkit
|
|
from typing import Dict, List, Optional
|
|
from collections import defaultdict
|
|
import abc
|
|
import time
|
|
import attr
|
|
from mlagents.trainers.policy.checkpoint_manager import (
|
|
NNCheckpoint,
|
|
NNCheckpointManager,
|
|
)
|
|
from mlagents_envs.logging_util import get_logger
|
|
from mlagents_envs.timers import timed
|
|
from mlagents.trainers.optimizer import Optimizer
|
|
from mlagents.trainers.buffer import AgentBuffer
|
|
from mlagents.trainers.trainer import Trainer
|
|
from mlagents.trainers.components.reward_signals import RewardSignalResult, RewardSignal
|
|
from mlagents_envs.timers import hierarchical_timer
|
|
from mlagents_envs.base_env import BehaviorSpec
|
|
from mlagents.trainers.policy.policy import Policy
|
|
from mlagents.trainers.policy.tf_policy import TFPolicy
|
|
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers
|
|
from mlagents.trainers.agent_processor import AgentManagerQueue
|
|
from mlagents.trainers.trajectory import Trajectory
|
|
from mlagents.trainers.settings import TrainerSettings, FrameworkType
|
|
from mlagents.trainers.stats import StatsPropertyType
|
|
from mlagents.trainers.model_saver.model_saver import BaseModelSaver
|
|
from mlagents.trainers.model_saver.tf_model_saver import TFModelSaver
|
|
from mlagents.trainers.exception import UnityTrainerException
|
|
|
|
try:
|
|
from mlagents.trainers.policy.torch_policy import TorchPolicy
|
|
from mlagents.trainers.model_saver.torch_model_saver import TorchModelSaver
|
|
except ModuleNotFoundError:
|
|
TorchPolicy = None # type: ignore
|
|
|
|
RewardSignalResults = Dict[str, RewardSignalResult]
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
class RLTrainer(Trainer): # pylint: disable=abstract-method
|
|
"""
|
|
This class is the base class for trainers that use Reward Signals.
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
# collected_rewards is a dictionary from name of reward signal to a dictionary of agent_id to cumulative reward
|
|
# used for reporting only. We always want to report the environment reward to Tensorboard, regardless
|
|
# of what reward signals are actually present.
|
|
self.cumulative_returns_since_policy_update: List[float] = []
|
|
self.collected_rewards: Dict[str, Dict[str, int]] = {
|
|
"environment": defaultdict(lambda: 0)
|
|
}
|
|
self.update_buffer: AgentBuffer = AgentBuffer()
|
|
self._stats_reporter.add_property(
|
|
StatsPropertyType.HYPERPARAMETERS, self.trainer_settings.as_dict()
|
|
)
|
|
self.framework = self.trainer_settings.framework
|
|
logger.debug(f"Using framework {self.framework.value}")
|
|
|
|
self._next_save_step = 0
|
|
self._next_summary_step = 0
|
|
self.model_saver = self.create_model_saver(
|
|
self.framework, self.trainer_settings, self.artifact_path, self.load
|
|
)
|
|
|
|
def end_episode(self) -> None:
|
|
"""
|
|
A signal that the Episode has ended. The buffer must be reset.
|
|
Get only called when the academy resets.
|
|
"""
|
|
for rewards in self.collected_rewards.values():
|
|
for agent_id in rewards:
|
|
rewards[agent_id] = 0
|
|
|
|
def _update_end_episode_stats(self, agent_id: str, optimizer: Optimizer) -> None:
|
|
for name, rewards in self.collected_rewards.items():
|
|
if name == "environment":
|
|
self.stats_reporter.add_stat(
|
|
"Environment/Cumulative Reward", rewards.get(agent_id, 0)
|
|
)
|
|
self.cumulative_returns_since_policy_update.append(
|
|
rewards.get(agent_id, 0)
|
|
)
|
|
self.reward_buffer.appendleft(rewards.get(agent_id, 0))
|
|
rewards[agent_id] = 0
|
|
else:
|
|
if isinstance(optimizer.reward_signals[name], RewardSignal):
|
|
self.stats_reporter.add_stat(
|
|
optimizer.reward_signals[name].stat_name,
|
|
rewards.get(agent_id, 0),
|
|
)
|
|
else:
|
|
self.stats_reporter.add_stat(
|
|
f"Policy/{optimizer.reward_signals[name].name.capitalize()} Reward",
|
|
rewards.get(agent_id, 0),
|
|
)
|
|
rewards[agent_id] = 0
|
|
|
|
def _clear_update_buffer(self) -> None:
|
|
"""
|
|
Clear the buffers that have been built up during inference.
|
|
"""
|
|
self.update_buffer.reset_agent()
|
|
|
|
@abc.abstractmethod
|
|
def _is_ready_update(self):
|
|
"""
|
|
Returns whether or not the trainer has enough elements to run update model
|
|
:return: A boolean corresponding to wether or not update_model() can be run
|
|
"""
|
|
return False
|
|
|
|
def create_policy(
|
|
self,
|
|
parsed_behavior_id: BehaviorIdentifiers,
|
|
behavior_spec: BehaviorSpec,
|
|
create_graph: bool = False,
|
|
) -> Policy:
|
|
if self.framework == FrameworkType.PYTORCH and TorchPolicy is None:
|
|
raise UnityTrainerException(
|
|
"To use the experimental PyTorch backend, install the PyTorch Python package first."
|
|
)
|
|
elif self.framework == FrameworkType.PYTORCH:
|
|
return self.create_torch_policy(parsed_behavior_id, behavior_spec)
|
|
else:
|
|
return self.create_tf_policy(
|
|
parsed_behavior_id, behavior_spec, create_graph=create_graph
|
|
)
|
|
|
|
@abc.abstractmethod
|
|
def create_torch_policy(
|
|
self, parsed_behavior_id: BehaviorIdentifiers, behavior_spec: BehaviorSpec
|
|
) -> TorchPolicy:
|
|
"""
|
|
Create a Policy object that uses the PyTorch backend.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def create_tf_policy(
|
|
self,
|
|
parsed_behavior_id: BehaviorIdentifiers,
|
|
behavior_spec: BehaviorSpec,
|
|
create_graph: bool = False,
|
|
) -> TFPolicy:
|
|
"""
|
|
Create a Policy object that uses the TensorFlow backend.
|
|
"""
|
|
pass
|
|
|
|
@staticmethod
|
|
def create_model_saver(
|
|
framework: str, trainer_settings: TrainerSettings, model_path: str, load: bool
|
|
) -> BaseModelSaver:
|
|
if framework == FrameworkType.PYTORCH:
|
|
model_saver = TorchModelSaver( # type: ignore
|
|
trainer_settings, model_path, load
|
|
)
|
|
else:
|
|
model_saver = TFModelSaver( # type: ignore
|
|
trainer_settings, model_path, load
|
|
)
|
|
return model_saver
|
|
|
|
def _policy_mean_reward(self) -> Optional[float]:
|
|
""" Returns the mean episode reward for the current policy. """
|
|
rewards = self.cumulative_returns_since_policy_update
|
|
if len(rewards) == 0:
|
|
return None
|
|
else:
|
|
return sum(rewards) / len(rewards)
|
|
|
|
@timed
|
|
def _checkpoint(self) -> NNCheckpoint:
|
|
"""
|
|
Checkpoints the policy associated with this trainer.
|
|
"""
|
|
n_policies = len(self.policies.keys())
|
|
if n_policies > 1:
|
|
logger.warning(
|
|
"Trainer has multiple policies, but default behavior only saves the first."
|
|
)
|
|
checkpoint_path = self.model_saver.save_checkpoint(self.brain_name, self.step)
|
|
new_checkpoint = NNCheckpoint(
|
|
int(self.step),
|
|
f"{checkpoint_path}.nn",
|
|
self._policy_mean_reward(),
|
|
time.time(),
|
|
)
|
|
NNCheckpointManager.add_checkpoint(
|
|
self.brain_name, new_checkpoint, self.trainer_settings.keep_checkpoints
|
|
)
|
|
return new_checkpoint
|
|
|
|
def save_model(self) -> None:
|
|
"""
|
|
Saves the policy associated with this trainer.
|
|
"""
|
|
n_policies = len(self.policies.keys())
|
|
if n_policies > 1:
|
|
logger.warning(
|
|
"Trainer has multiple policies, but default behavior only saves the first."
|
|
)
|
|
elif n_policies == 0:
|
|
logger.warning("Trainer has no policies, not saving anything.")
|
|
return
|
|
|
|
model_checkpoint = self._checkpoint()
|
|
self.model_saver.copy_final_model(model_checkpoint.file_path)
|
|
final_checkpoint = attr.evolve(
|
|
model_checkpoint, file_path=f"{self.model_saver.model_path}.nn"
|
|
)
|
|
NNCheckpointManager.track_final_checkpoint(self.brain_name, final_checkpoint)
|
|
|
|
@abc.abstractmethod
|
|
def _update_policy(self) -> bool:
|
|
"""
|
|
Uses demonstration_buffer to update model.
|
|
:return: Whether or not the policy was updated.
|
|
"""
|
|
pass
|
|
|
|
def _increment_step(self, n_steps: int, name_behavior_id: str) -> None:
|
|
"""
|
|
Increment the step count of the trainer
|
|
:param n_steps: number of steps to increment the step count by
|
|
"""
|
|
self.step += n_steps
|
|
self._next_summary_step = self._get_next_interval_step(self.summary_freq)
|
|
self._next_save_step = self._get_next_interval_step(
|
|
self.trainer_settings.checkpoint_interval
|
|
)
|
|
p = self.get_policy(name_behavior_id)
|
|
if p:
|
|
p.increment_step(n_steps)
|
|
|
|
def _get_next_interval_step(self, interval: int) -> int:
|
|
"""
|
|
Get the next step count that should result in an action.
|
|
:param interval: The interval between actions.
|
|
"""
|
|
return self.step + (interval - self.step % interval)
|
|
|
|
def _write_summary(self, step: int) -> None:
|
|
"""
|
|
Saves training statistics to Tensorboard.
|
|
"""
|
|
self.stats_reporter.add_stat("Is Training", float(self.should_still_train))
|
|
self.stats_reporter.write_stats(int(step))
|
|
|
|
@abc.abstractmethod
|
|
def _process_trajectory(self, trajectory: Trajectory) -> None:
|
|
"""
|
|
Takes a trajectory and processes it, putting it into the update buffer.
|
|
:param trajectory: The Trajectory tuple containing the steps to be processed.
|
|
"""
|
|
self._maybe_write_summary(self.get_step + len(trajectory.steps))
|
|
self._maybe_save_model(self.get_step + len(trajectory.steps))
|
|
self._increment_step(len(trajectory.steps), trajectory.behavior_id)
|
|
|
|
def _maybe_write_summary(self, step_after_process: int) -> None:
|
|
"""
|
|
If processing the trajectory will make the step exceed the next summary write,
|
|
write the summary. This logic ensures summaries are written on the update step and not in between.
|
|
:param step_after_process: the step count after processing the next trajectory.
|
|
"""
|
|
if self._next_summary_step == 0: # Don't write out the first one
|
|
self._next_summary_step = self._get_next_interval_step(self.summary_freq)
|
|
if step_after_process >= self._next_summary_step and self.get_step != 0:
|
|
self._write_summary(self._next_summary_step)
|
|
|
|
def _maybe_save_model(self, step_after_process: int) -> None:
|
|
"""
|
|
If processing the trajectory will make the step exceed the next model write,
|
|
save the model. This logic ensures models are written on the update step and not in between.
|
|
:param step_after_process: the step count after processing the next trajectory.
|
|
"""
|
|
if self._next_save_step == 0: # Don't save the first one
|
|
self._next_save_step = self._get_next_interval_step(
|
|
self.trainer_settings.checkpoint_interval
|
|
)
|
|
if step_after_process >= self._next_save_step and self.get_step != 0:
|
|
self._checkpoint()
|
|
|
|
def advance(self) -> None:
|
|
"""
|
|
Steps the trainer, taking in trajectories and updates if ready.
|
|
Will block and wait briefly if there are no trajectories.
|
|
"""
|
|
with hierarchical_timer("process_trajectory"):
|
|
for traj_queue in self.trajectory_queues:
|
|
# We grab at most the maximum length of the queue.
|
|
# This ensures that even if the queue is being filled faster than it is
|
|
# being emptied, the trajectories in the queue are on-policy.
|
|
_queried = False
|
|
for _ in range(traj_queue.qsize()):
|
|
_queried = True
|
|
try:
|
|
t = traj_queue.get_nowait()
|
|
self._process_trajectory(t)
|
|
except AgentManagerQueue.Empty:
|
|
break
|
|
if self.threaded and not _queried:
|
|
# Yield thread to avoid busy-waiting
|
|
time.sleep(0.0001)
|
|
if self.should_still_train:
|
|
if self._is_ready_update():
|
|
with hierarchical_timer("_update_policy"):
|
|
if self._update_policy():
|
|
for q in self.policy_queues:
|
|
# Get policies that correspond to the policy queue in question
|
|
q.put(self.get_policy(q.behavior_id))
|
|
else:
|
|
self._clear_update_buffer()
|