Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

533 行
23 KiB

#if ENABLE_TENSORFLOW
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using Barracuda;
namespace MLAgents.InferenceBrain
{
/// <summary>
/// Prepares the Tensors for the Learning Brain and exposes a list of failed checks if Model
/// and BrainParameters are incompatible.
/// </summary>
public class ModelParamLoader
{
private enum ModelActionType
{
Unknown,
Discrete,
Continuous
}
private const long ApiVersion = 2;
private TFSharpInferenceEngine _engine;
private BrainParameters _brainParameters;
private List<string> _failedModelChecks = new List<string>();
/// <summary>
/// Factory for the ModelParamLoader : Creates a ModelParamLoader and runs the checks
/// on it.
/// </summary>
/// <param name="engine"> The InferenceEngine we get the parameters and the checks from
/// </param>
/// <param name="brainParameters"> The BrainParamters that are used verify the
/// compatibility with the InferenceEngine</param>
/// <returns></returns>
public static ModelParamLoader GetLoaderAndCheck(TFSharpInferenceEngine engine,
BrainParameters brainParameters)
{
ModelParamLoader modelParamLoader = new ModelParamLoader(engine, brainParameters);
modelParamLoader.GenerateChecks();
return modelParamLoader;
}
private ModelParamLoader(TFSharpInferenceEngine engine, BrainParameters brainParameters)
{
_engine = engine;
_brainParameters = brainParameters;
}
/// <summary>
/// Generates the Tensor inputs that are expected to be present in the Model.
/// </summary>
/// <returns>TensorProxy IEnumerable with the expected Tensor inputs</returns>
public IReadOnlyList<TensorProxy> GetInputTensors()
{
return _engine?.InputFeatures();
}
/// <summary>
/// Generates the Tensor outputs that are expected to be present in the Model.
/// </summary>
/// <returns>TensorProxy IEnumerable with the expected Tensor outputs</returns>
public IReadOnlyList<TensorProxy> GetOutputTensors()
{
var tensorList = new List<TensorProxy>();
if (_brainParameters.vectorActionSpaceType == SpaceType.continuous)
{
tensorList.Add(new TensorProxy()
{
Name = TensorNames.ActionOutput,
Shape = new long[]
{
-1, _brainParameters.vectorActionSize[0]
},
ValueType = TensorProxy.TensorType.FloatingPoint,
Data = null
});
}
else
{
tensorList.Add(
new TensorProxy()
{
Name = TensorNames.ActionOutput,
Shape = new long[]
{
-1, _brainParameters.vectorActionSize.Sum()
},
ValueType = TensorProxy.TensorType.FloatingPoint,
Data = null
});
}
var memory = GetIntScalar(TensorNames.MemorySize);
if (memory > 0)
{
tensorList.Add(new TensorProxy()
{
Name = TensorNames.RecurrentOutput,
Shape = new long[2]
{
-1, memory
},
ValueType = TensorProxy.TensorType.FloatingPoint,
Data = null
});
}
return tensorList;
}
/// <summary>
/// Queries the InferenceEngine for the value of a variable in the graph given its name.
/// Only works with int32 Tensors with zero dimensions containing a unique element.
/// If the node was not found or could not be retrieved, the value -1 will be returned.
/// </summary>
/// <param name="name">The name of the Tensor variable</param>
/// <returns>The value of the scalar variable in the model. (-1 if not found)</returns>
private int GetIntScalar(string name)
{
var outputs = new TensorProxy[]
{
new TensorProxy()
{
Name = name,
ValueType = TensorProxy.TensorType.Integer,
Shape = new long[] { },
Data = new Tensor(1,1)
},
};
try
{
_engine.ExecuteGraph(new TensorProxy[0], outputs);
}
catch (Exception ex)
{
UnityEngine.Debug.LogError($"Failed to execute GetIntScalar()\n{ex}");
return -1;
}
return (int)outputs[0].Data[0];
}
/// <summary>
/// Retrieves an IEnumerable of string corresponding to the failed compatibility checks
/// between the InferenceEngine and the BrainParameters.
/// </summary>
public IEnumerable<string> GetChecks()
{
return _failedModelChecks;
}
/// <summary>
/// Generates the list of failed checks that failed when comparing the data from the Model
/// and from the BrainParameters
/// </summary>
private void GenerateChecks()
{
_failedModelChecks.Clear();
if (_engine == null)
{
_failedModelChecks.Add(
"There is no model for this Brain, cannot run inference. " +
"(But can still train)");
return;
}
var modelApiVersion = GetIntScalar(TensorNames.VersionNumber);
var memorySize = GetIntScalar(TensorNames.MemorySize);
var isContinuousInt = GetIntScalar(TensorNames.IsContinuousControl);
var isContinuous = GetActionType(isContinuousInt);
var actionSize = GetIntScalar(TensorNames.ActionOutputShape);
if (modelApiVersion == -1)
{
_failedModelChecks.Add(
"Model was not trained using the right version of ML-Agents. Cannot use this " +
"model.");
return;
}
if (modelApiVersion != ApiVersion)
{
_failedModelChecks.Add(
$"Version of the trainer the model was trained with ({modelApiVersion}) " +
$"is not compatible with the Brain's version ({ApiVersion}).");
return;
}
CheckIntScalarPresenceHelper(new Dictionary<string, int>()
{
{TensorNames.MemorySize, memorySize},
{TensorNames.IsContinuousControl, isContinuousInt},
{TensorNames.ActionOutputShape, actionSize}
});
CheckInputTensorPresence(memorySize, isContinuous);
CheckOutputTensorPresence(memorySize);
CheckInputTensorShape();
CheckOutputTensorShape(isContinuous, actionSize);
}
/// <summary>
/// Converts the integer value in the model corresponding to the type of control to a
/// ModelActionType.
/// </summary>
/// <param name="isContinuousInt"> The integer value in the model indicating the
/// type of control</param>
/// <returns>The equivalent ModelActionType</returns>
private static ModelActionType GetActionType(int isContinuousInt)
{
ModelActionType isContinuous;
switch (isContinuousInt)
{
case 0:
isContinuous = ModelActionType.Discrete;
break;
case 1:
isContinuous = ModelActionType.Continuous;
break;
default:
isContinuous = ModelActionType.Unknown;
break;
}
return isContinuous;
}
/// <summary>
/// Given a Dictionary of node names to int values, create checks if the values have the
/// invalid value of -1.
/// </summary>
/// <param name="requiredScalarFields"> Mapping from node names to int values</param>
private void CheckIntScalarPresenceHelper(Dictionary<string, int> requiredScalarFields)
{
foreach(var field in requiredScalarFields)
if (field.Value == -1)
{
_failedModelChecks.Add(
$"Missing node in the model provided : {field.Key}");
}
}
/// <summary>
/// Generates failed checks that correspond to inputs expected by the model that are not
/// present in the BrainParameters.
/// </summary>
/// <param name="memory"> The memory size that the model is expecting/</param>
/// <param name="isContinuous"> Whether the model is expecting continuous or
/// discrete control.</param>
/// <returns>A IEnumerable of string corresponding to the failed input presence
/// checks.</returns>
private void CheckInputTensorPresence(int memory, ModelActionType isContinuous)
{
var tensorsNames = GetInputTensors().Select(x => x.Name).ToList();
// If there is no Vector Observation Input but the Brain Parameters expect one.
if ((_brainParameters.vectorObservationSize != 0) &&
(!tensorsNames.Contains(TensorNames.VectorObservationPlacholder)))
{
_failedModelChecks.Add(
"The model does not contain a Vector Observation Placeholder Input. " +
"You must set the Vector Observation Space Size to 0.");
}
// If there are not enough Visual Observation Input compared to what the
// Brain Parameters expect.
for (var visObsIndex = 0;
visObsIndex < _brainParameters.cameraResolutions.Length;
visObsIndex++)
{
if (!tensorsNames.Contains(
TensorNames.VisualObservationPlaceholderPrefix + visObsIndex))
{
_failedModelChecks.Add(
"The model does not contain a Visual Observation Placeholder Input " +
"for visual observation "+visObsIndex+".");
}
}
// If the model has a non-negative memory size but requires a recurrent input
if (memory > 0)
{
if (!tensorsNames.Contains(TensorNames.RecurrentInPlaceholder))
{
_failedModelChecks.Add(
"The model does not contain a Recurrent Input Node but has memory_size.");
}
}
// If the model uses discrete control but does not have an input for action masks
if (isContinuous == ModelActionType.Discrete)
{
if (!tensorsNames.Contains(TensorNames.ActionMaskPlaceholder))
{
_failedModelChecks.Add(
"The model does not contain an Action Mask but is using Discrete Control.");
}
}
}
/// <summary>
/// Generates failed checks that correspond to outputs expected by the model that are not
/// present in the BrainParameters.
/// </summary>
/// <param name="memory"> The memory size that the model is expecting/</param>
/// <returns>A IEnumerable of string corresponding to the failed output presence
/// checks.</returns>
private void CheckOutputTensorPresence(int memory)
{
var tensorsNames = GetOutputTensors().Select(x => x.Name).ToList();
// If there is no Action Output.
if (!tensorsNames.Contains(TensorNames.ActionOutput))
{
_failedModelChecks.Add("The model does not contain an Action Output Node.");
}
// If there is no Recurrent Output but the model is Recurrent.
if (memory > 0)
{
if (!tensorsNames.Contains(TensorNames.RecurrentOutput))
{
_failedModelChecks.Add(
"The model does not contain a Recurrent Output Node but has memory_size.");
}
}
}
/// <summary>
/// Generates failed checks that correspond to inputs shapes incompatibilities between
/// the model and the BrainParameters.
/// </summary>
private void CheckInputTensorShape()
{
var tensorTester =
new Dictionary<string, Func<TensorProxy, string>>()
{
{TensorNames.VectorObservationPlacholder, CheckVectorObsShape},
{TensorNames.PreviousActionPlaceholder, CheckPreviousActionShape},
{TensorNames.RandomNormalEpsilonPlaceholder, ((tensor) => null)},
{TensorNames.ActionMaskPlaceholder, ((tensor) => null)},
{TensorNames.SequenceLengthPlaceholder, ((tensor) => null)},
{TensorNames.RecurrentInPlaceholder, ((tensor) => null)},
};
for (var obsIndex = 0; obsIndex < _brainParameters.cameraResolutions.Length; obsIndex++)
{
var index = obsIndex;
tensorTester[TensorNames.VisualObservationPlaceholderPrefix + obsIndex] =
(tensor) => CheckVisualObsShape(tensor, index);
}
// If the model expects an input but it is not in this list
foreach (var tensor in GetInputTensors())
{
if (!tensorTester.ContainsKey(tensor.Name))
{
_failedModelChecks.Add(
"Model requires an unknown input named : " + tensor.Name);
}
else
{
var tester = tensorTester[tensor.Name];
var error = tester.Invoke(tensor);
if (error != null)
{
_failedModelChecks.Add(error);
}
}
}
}
/// <summary>
/// Checks that the shape of the Vector Observation input placeholder is the same in the
/// model and in the Brain Parameters.
/// </summary>
/// <param name="tensor"> The tensor that is expected by the model</param>
/// <returns>If the Check failed, returns a string containing information about why the
/// check failed. If the check passed, returns null.</returns>
private string CheckVectorObsShape(TensorProxy tensor)
{
var vecObsSizeBp = _brainParameters.vectorObservationSize;
var numStackedVector = _brainParameters.numStackedVectorObservations;
var totalVecObsSizeT = tensor.Shape[1];
if (vecObsSizeBp * numStackedVector != totalVecObsSizeT)
{
return string.Format(
"Vector Observation Size of the model does not match. " +
"Received {0} x {1} but was expecting {2}.",
vecObsSizeBp, numStackedVector, totalVecObsSizeT);
}
return null;
}
/// <summary>
/// Checks that the shape of the Previous Vector Action input placeholder is the same in the
/// model and in the Brain Parameters.
/// </summary>
/// <param name="tensor"> The tensor that is expected by the model</param>
/// <returns>If the Check failed, returns a string containing information about why the
/// check failed. If the check passed, returns null.</returns>
private string CheckPreviousActionShape(TensorProxy tensor)
{
var numberActionsBp = _brainParameters.vectorActionSize.Length;
var numberActionsT = tensor.Shape[1];
if (numberActionsBp != numberActionsT)
{
return string.Format(
"Previous Action Size of the model does not match. " +
"Received {0} but was expecting {1}.",
numberActionsBp, numberActionsT);
}
return null;
}
/// <summary>
/// Checks that the shape of the visual observation input placeholder is the same in the
/// model and in the Brain Parameters.
/// </summary>
/// <param name="tensor"> The tensor that is expected by the model</param>
/// <param name="visObsIndex"> The index of the visual observation.</param>
/// <returns>If the Check failed, returns a string containing information about why the
/// check failed. If the check passed, returns null.</returns>
private string CheckVisualObsShape(TensorProxy tensor, int visObsIndex)
{
var resolutionBp = _brainParameters.cameraResolutions[visObsIndex];
var widthBp = resolutionBp.width;
var heightBp = resolutionBp.height;
var pixelBp = resolutionBp.blackAndWhite ? 1 : 3;
var heightT = tensor.Shape[1];
var widthT = tensor.Shape[2];
var pixelT = tensor.Shape[3];
if ((widthBp != widthT) || (heightBp != heightT) || (pixelBp != pixelT))
{
return string.Format(
"The visual Observation {0} of the model does not match. " +
"Received TensorProxy of shape [?x{1}x{2}x{3}] but was expecting [?x{4}x{5}x{6}].",
visObsIndex, widthBp, heightBp, pixelBp, widthT, heightT, pixelT);
}
return null;
}
/// <summary>
/// Generates failed checks that correspond to output shapes incompatibilities between
/// the model and the BrainParameters.
/// </summary>
/// <param name="isContinuous"> Whether the model is expecting continuous or
/// discrete control.</param>
/// <param name="modelActionSize"> The size of the action output that is expected
/// by the model.</param>
/// <returns>A IEnumerable of string corresponding to the incompatible shapes between
/// model and BrainParameters.</returns>
private void CheckOutputTensorShape(ModelActionType isContinuous, int modelActionSize)
{
if (isContinuous == ModelActionType.Unknown)
{
_failedModelChecks.Add(
"Cannot infer type of Control from the provided model.");
return;
}
if (isContinuous == ModelActionType.Continuous &&
_brainParameters.vectorActionSpaceType != SpaceType.continuous)
{
_failedModelChecks.Add(
"Model has been trained using Continuous Control but the Brain Parameters " +
"suggest Discrete Control.");
return;
}
if (isContinuous == ModelActionType.Discrete &&
_brainParameters.vectorActionSpaceType != SpaceType.discrete)
{
_failedModelChecks.Add(
"Model has been trained using Discrete Control but the Brain Parameters " +
"suggest Continuous Control.");
return;
}
var tensorTester = new Dictionary<string, Func<TensorProxy, int, string>>();
if (_brainParameters.vectorActionSpaceType == SpaceType.continuous)
{
tensorTester[TensorNames.ActionOutput] = CheckContinuousActionOutputShape;
}
else
{
tensorTester[TensorNames.ActionOutput] = CheckDiscreteActionOutputShape;
}
// If the model expects an output but it is not in this list
foreach (var tensor in GetOutputTensors())
{
if (tensorTester.ContainsKey(tensor.Name))
{
var tester = tensorTester[tensor.Name];
var error = tester.Invoke(tensor, modelActionSize);
if (error != null)
{
_failedModelChecks.Add(error);
}
}
}
}
/// <summary>
/// Checks that the shape of the discrete action output is the same in the
/// model and in the Brain Parameters.
/// </summary>
/// <param name="tensor"> The tensor that is expected by the model</param>
/// <param name="modelActionSize"> The size of the action output that is expected
/// by the model.</param>
/// <returns>If the Check failed, returns a string containing information about why the
/// check failed. If the check passed, returns null.</returns>
private string CheckDiscreteActionOutputShape(TensorProxy tensor, int modelActionSize)
{
var bpActionSize = _brainParameters.vectorActionSize.Sum();
if (modelActionSize != bpActionSize)
{
return string.Format(
"Action Size of the model does not match. " +
"The BrainParameters expect {0} but the model contains {1}.",
bpActionSize, modelActionSize);
}
return null;
}
/// <summary>
/// Checks that the shape of the continuous action output is the same in the
/// model and in the Brain Parameters.
/// </summary>
/// <param name="tensor"> The tensor that is expected by the model</param>
/// <param name="modelActionSize"> The size of the action output that is expected
/// by the model.</param>
/// <returns>If the Check failed, returns a string containing information about why the
/// check failed. If the check passed, returns null.</returns>
private string CheckContinuousActionOutputShape(TensorProxy tensor, int modelActionSize)
{
var bpActionSize = _brainParameters.vectorActionSize[0];
if (modelActionSize != bpActionSize)
{
return string.Format(
"Action Size of the model does not match. " +
"The BrainParameters expect {0} but the model contains {1}.",
bpActionSize, modelActionSize);
}
return null;
}
}
}
#endif