Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

168 行
5.4 KiB

# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/agent_action_proto.proto
import sys
_b = sys.version_info[0] < 3 and (lambda x: x) or (lambda x: x.encode("latin1"))
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
from mlagents.envs.communicator_objects import (
custom_action_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_custom__action__pb2,
)
DESCRIPTOR = _descriptor.FileDescriptor(
name="mlagents/envs/communicator_objects/agent_action_proto.proto",
package="communicator_objects",
syntax="proto3",
serialized_options=_b("\252\002\034MLAgents.CommunicatorObjects"),
serialized_pb=_b(
'\n;mlagents/envs/communicator_objects/agent_action_proto.proto\x12\x14\x63ommunicator_objects\x1a\x36mlagents/envs/communicator_objects/custom_action.proto"\x9c\x01\n\x10\x41gentActionProto\x12\x16\n\x0evector_actions\x18\x01 \x03(\x02\x12\x14\n\x0ctext_actions\x18\x02 \x01(\t\x12\x10\n\x08memories\x18\x03 \x03(\x02\x12\r\n\x05value\x18\x04 \x01(\x02\x12\x39\n\rcustom_action\x18\x05 \x01(\x0b\x32".communicator_objects.CustomActionB\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3'
),
dependencies=[
mlagents_dot_envs_dot_communicator__objects_dot_custom__action__pb2.DESCRIPTOR
],
)
_AGENTACTIONPROTO = _descriptor.Descriptor(
name="AgentActionProto",
full_name="communicator_objects.AgentActionProto",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="vector_actions",
full_name="communicator_objects.AgentActionProto.vector_actions",
index=0,
number=1,
type=2,
cpp_type=6,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="text_actions",
full_name="communicator_objects.AgentActionProto.text_actions",
index=1,
number=2,
type=9,
cpp_type=9,
label=1,
has_default_value=False,
default_value=_b("").decode("utf-8"),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="memories",
full_name="communicator_objects.AgentActionProto.memories",
index=2,
number=3,
type=2,
cpp_type=6,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="value",
full_name="communicator_objects.AgentActionProto.value",
index=3,
number=4,
type=2,
cpp_type=6,
label=1,
has_default_value=False,
default_value=float(0),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="custom_action",
full_name="communicator_objects.AgentActionProto.custom_action",
index=4,
number=5,
type=11,
cpp_type=10,
label=1,
has_default_value=False,
default_value=None,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
],
extensions=[],
nested_types=[],
enum_types=[],
serialized_options=None,
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[],
serialized_start=142,
serialized_end=298,
)
_AGENTACTIONPROTO.fields_by_name[
"custom_action"
].message_type = (
mlagents_dot_envs_dot_communicator__objects_dot_custom__action__pb2._CUSTOMACTION
)
DESCRIPTOR.message_types_by_name["AgentActionProto"] = _AGENTACTIONPROTO
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
AgentActionProto = _reflection.GeneratedProtocolMessageType(
"AgentActionProto",
(_message.Message,),
dict(
DESCRIPTOR=_AGENTACTIONPROTO,
__module__="mlagents.envs.communicator_objects.agent_action_proto_pb2"
# @@protoc_insertion_point(class_scope:communicator_objects.AgentActionProto)
),
)
_sym_db.RegisterMessage(AgentActionProto)
DESCRIPTOR._options = None
# @@protoc_insertion_point(module_scope)