您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
179 行
6.6 KiB
179 行
6.6 KiB
import pytest
|
|
from unittest import mock
|
|
import os
|
|
import unittest
|
|
import tempfile
|
|
|
|
import numpy as np
|
|
from mlagents.tf_utils import tf
|
|
from mlagents.trainers.model_saver.tf_model_saver import TFModelSaver
|
|
from mlagents.trainers import __version__
|
|
from mlagents.trainers.settings import TrainerSettings, NetworkSettings
|
|
from mlagents.trainers.policy.tf_policy import TFPolicy
|
|
from mlagents.trainers.tests import mock_brain as mb
|
|
from mlagents.trainers.tests.tensorflow.test_nn_policy import create_policy_mock
|
|
from mlagents.trainers.tests.test_trajectory import make_fake_trajectory
|
|
from mlagents.trainers.ppo.optimizer_tf import PPOOptimizer
|
|
|
|
|
|
def test_register(tmp_path):
|
|
trainer_params = TrainerSettings()
|
|
model_saver = TFModelSaver(trainer_params, tmp_path)
|
|
|
|
opt = mock.Mock(spec=PPOOptimizer)
|
|
model_saver.register(opt)
|
|
assert model_saver.policy is None
|
|
|
|
trainer_params = TrainerSettings()
|
|
policy = create_policy_mock(trainer_params)
|
|
model_saver.register(policy)
|
|
assert model_saver.policy is not None
|
|
|
|
|
|
class ModelVersionTest(unittest.TestCase):
|
|
def test_version_compare(self):
|
|
# Test write_stats
|
|
with self.assertLogs("mlagents.trainers", level="WARNING") as cm:
|
|
trainer_params = TrainerSettings()
|
|
mock_path = tempfile.mkdtemp()
|
|
policy = create_policy_mock(trainer_params)
|
|
model_saver = TFModelSaver(trainer_params, mock_path)
|
|
model_saver.register(policy)
|
|
|
|
model_saver._check_model_version(
|
|
"0.0.0"
|
|
) # This is not the right version for sure
|
|
# Assert that 1 warning has been thrown with incorrect version
|
|
assert len(cm.output) == 1
|
|
model_saver._check_model_version(
|
|
__version__
|
|
) # This should be the right version
|
|
# Assert that no additional warnings have been thrown wth correct ver
|
|
assert len(cm.output) == 1
|
|
|
|
|
|
def test_load_save(tmp_path):
|
|
path1 = os.path.join(tmp_path, "runid1")
|
|
path2 = os.path.join(tmp_path, "runid2")
|
|
trainer_params = TrainerSettings()
|
|
policy = create_policy_mock(trainer_params)
|
|
model_saver = TFModelSaver(trainer_params, path1)
|
|
model_saver.register(policy)
|
|
model_saver.initialize_or_load(policy)
|
|
policy.set_step(2000)
|
|
|
|
mock_brain_name = "MockBrain"
|
|
model_saver.save_checkpoint(mock_brain_name, 2000)
|
|
assert len(os.listdir(tmp_path)) > 0
|
|
|
|
# Try load from this path
|
|
model_saver = TFModelSaver(trainer_params, path1, load=True)
|
|
policy2 = create_policy_mock(trainer_params)
|
|
model_saver.register(policy2)
|
|
model_saver.initialize_or_load(policy2)
|
|
_compare_two_policies(policy, policy2)
|
|
assert policy2.get_current_step() == 2000
|
|
|
|
# Try initialize from path 1
|
|
trainer_params.init_path = path1
|
|
model_saver = TFModelSaver(trainer_params, path2)
|
|
policy3 = create_policy_mock(trainer_params)
|
|
model_saver.register(policy3)
|
|
model_saver.initialize_or_load(policy3)
|
|
|
|
_compare_two_policies(policy2, policy3)
|
|
# Assert that the steps are 0.
|
|
assert policy3.get_current_step() == 0
|
|
|
|
|
|
def _compare_two_policies(policy1: TFPolicy, policy2: TFPolicy) -> None:
|
|
"""
|
|
Make sure two policies have the same output for the same input.
|
|
"""
|
|
decision_step, _ = mb.create_steps_from_behavior_spec(
|
|
policy1.behavior_spec, num_agents=1
|
|
)
|
|
run_out1 = policy1.evaluate(decision_step, list(decision_step.agent_id))
|
|
run_out2 = policy2.evaluate(decision_step, list(decision_step.agent_id))
|
|
|
|
np.testing.assert_array_equal(run_out2["log_probs"], run_out1["log_probs"])
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
|
|
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
|
|
def test_checkpoint_conversion(tmpdir, rnn, visual, discrete):
|
|
tf.reset_default_graph()
|
|
dummy_config = TrainerSettings()
|
|
model_path = os.path.join(tmpdir, "Mock_Brain")
|
|
policy = create_policy_mock(
|
|
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual
|
|
)
|
|
trainer_params = TrainerSettings()
|
|
model_saver = TFModelSaver(trainer_params, model_path)
|
|
model_saver.register(policy)
|
|
model_saver.save_checkpoint("Mock_Brain", 100)
|
|
assert os.path.isfile(model_path + "/Mock_Brain-100.nn")
|
|
|
|
|
|
# This is the normalizer test from test_nn_policy.py but with a load
|
|
def test_normalizer_after_load(tmp_path):
|
|
behavior_spec = mb.setup_test_behavior_specs(
|
|
use_discrete=True, use_visual=False, vector_action_space=[2], vector_obs_space=1
|
|
)
|
|
time_horizon = 6
|
|
trajectory = make_fake_trajectory(
|
|
length=time_horizon,
|
|
max_step_complete=True,
|
|
observation_shapes=[(1,)],
|
|
action_space=[2],
|
|
)
|
|
# Change half of the obs to 0
|
|
for i in range(3):
|
|
trajectory.steps[i].obs[0] = np.zeros(1, dtype=np.float32)
|
|
|
|
trainer_params = TrainerSettings(network_settings=NetworkSettings(normalize=True))
|
|
policy = TFPolicy(0, behavior_spec, trainer_params)
|
|
|
|
trajectory_buffer = trajectory.to_agentbuffer()
|
|
policy.update_normalization(trajectory_buffer["vector_obs"])
|
|
|
|
# Check that the running mean and variance is correct
|
|
steps, mean, variance = policy.sess.run(
|
|
[policy.normalization_steps, policy.running_mean, policy.running_variance]
|
|
)
|
|
|
|
assert steps == 6
|
|
assert mean[0] == 0.5
|
|
assert variance[0] / steps == pytest.approx(0.25, abs=0.01)
|
|
# Save ckpt and load into another policy
|
|
path1 = os.path.join(tmp_path, "runid1")
|
|
model_saver = TFModelSaver(trainer_params, path1)
|
|
model_saver.register(policy)
|
|
mock_brain_name = "MockBrain"
|
|
model_saver.save_checkpoint(mock_brain_name, 6)
|
|
assert len(os.listdir(tmp_path)) > 0
|
|
policy1 = TFPolicy(0, behavior_spec, trainer_params)
|
|
model_saver = TFModelSaver(trainer_params, path1, load=True)
|
|
model_saver.register(policy1)
|
|
model_saver.initialize_or_load(policy1)
|
|
|
|
# Make another update to new policy, this time with all 1's
|
|
time_horizon = 10
|
|
trajectory = make_fake_trajectory(
|
|
length=time_horizon,
|
|
max_step_complete=True,
|
|
observation_shapes=[(1,)],
|
|
action_space=[2],
|
|
)
|
|
trajectory_buffer = trajectory.to_agentbuffer()
|
|
policy1.update_normalization(trajectory_buffer["vector_obs"])
|
|
|
|
# Check that the running mean and variance is correct
|
|
steps, mean, variance = policy1.sess.run(
|
|
[policy1.normalization_steps, policy1.running_mean, policy1.running_variance]
|
|
)
|
|
|
|
assert steps == 16
|
|
assert mean[0] == 0.8125
|
|
assert variance[0] / steps == pytest.approx(0.152, abs=0.01)
|