您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
242 行
8.8 KiB
242 行
8.8 KiB
import pytest
|
|
from unittest import mock
|
|
import attr
|
|
|
|
from mlagents.tf_utils import tf
|
|
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers
|
|
|
|
from mlagents.trainers.trainer.rl_trainer import RLTrainer
|
|
from mlagents.trainers.sac.trainer import SACTrainer
|
|
from mlagents.trainers.sac.optimizer_tf import SACOptimizer
|
|
from mlagents.trainers.policy.tf_policy import TFPolicy
|
|
from mlagents.trainers.agent_processor import AgentManagerQueue
|
|
from mlagents.trainers.tests import mock_brain as mb
|
|
from mlagents.trainers.tests.mock_brain import setup_test_behavior_specs
|
|
from mlagents.trainers.tests.test_trajectory import make_fake_trajectory
|
|
from mlagents.trainers.settings import NetworkSettings, FrameworkType
|
|
from mlagents.trainers.tests.dummy_config import ( # noqa: F401; pylint: disable=unused-variable
|
|
curiosity_dummy_config,
|
|
sac_dummy_config,
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_config():
|
|
return attr.evolve(sac_dummy_config(), framework=FrameworkType.TENSORFLOW)
|
|
|
|
|
|
VECTOR_ACTION_SPACE = 2
|
|
VECTOR_OBS_SPACE = 8
|
|
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
|
|
BUFFER_INIT_SAMPLES = 64
|
|
NUM_AGENTS = 12
|
|
|
|
|
|
def create_sac_optimizer_mock(dummy_config, use_rnn, use_discrete, use_visual):
|
|
mock_brain = mb.setup_test_behavior_specs(
|
|
use_discrete,
|
|
use_visual,
|
|
vector_action_space=DISCRETE_ACTION_SPACE
|
|
if use_discrete
|
|
else VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE if not use_visual else 0,
|
|
)
|
|
trainer_settings = dummy_config
|
|
trainer_settings.network_settings.memory = (
|
|
NetworkSettings.MemorySettings(sequence_length=16, memory_size=10)
|
|
if use_rnn
|
|
else None
|
|
)
|
|
policy = TFPolicy(
|
|
0, mock_brain, trainer_settings, "test", False, create_tf_graph=False
|
|
)
|
|
optimizer = SACOptimizer(policy, trainer_settings)
|
|
optimizer.policy.initialize()
|
|
return optimizer
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
|
|
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
|
|
def test_sac_optimizer_update(dummy_config, rnn, visual, discrete):
|
|
# Test evaluate
|
|
tf.reset_default_graph()
|
|
optimizer = create_sac_optimizer_mock(
|
|
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual
|
|
)
|
|
# Test update
|
|
update_buffer = mb.simulate_rollout(
|
|
BUFFER_INIT_SAMPLES, optimizer.policy.behavior_spec
|
|
)
|
|
# Mock out reward signal eval
|
|
update_buffer["extrinsic_rewards"] = update_buffer["environment_rewards"]
|
|
optimizer.update(
|
|
update_buffer,
|
|
num_sequences=update_buffer.num_experiences // optimizer.policy.sequence_length,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
def test_sac_update_reward_signals(
|
|
dummy_config, curiosity_dummy_config, discrete # noqa: F811
|
|
):
|
|
# Test evaluate
|
|
tf.reset_default_graph()
|
|
# Add a Curiosity module
|
|
dummy_config.reward_signals = curiosity_dummy_config
|
|
optimizer = create_sac_optimizer_mock(
|
|
dummy_config, use_rnn=False, use_discrete=discrete, use_visual=False
|
|
)
|
|
|
|
# Test update, while removing PPO-specific buffer elements.
|
|
update_buffer = mb.simulate_rollout(
|
|
BUFFER_INIT_SAMPLES, optimizer.policy.behavior_spec
|
|
)
|
|
|
|
# Mock out reward signal eval
|
|
update_buffer["extrinsic_rewards"] = update_buffer["environment_rewards"]
|
|
update_buffer["curiosity_rewards"] = update_buffer["environment_rewards"]
|
|
optimizer.update_reward_signals(
|
|
{"curiosity": update_buffer}, num_sequences=update_buffer.num_experiences
|
|
)
|
|
|
|
|
|
def test_sac_save_load_buffer(tmpdir, dummy_config):
|
|
mock_specs = mb.setup_test_behavior_specs(
|
|
False,
|
|
False,
|
|
vector_action_space=VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE,
|
|
)
|
|
trainer_params = dummy_config
|
|
trainer_params.hyperparameters.save_replay_buffer = True
|
|
trainer = SACTrainer("test", 1, trainer_params, True, False, 0, "testdir")
|
|
behavior_id = BehaviorIdentifiers.from_name_behavior_id(trainer.brain_name)
|
|
policy = trainer.create_policy(behavior_id, mock_specs)
|
|
trainer.add_policy(behavior_id, policy)
|
|
|
|
trainer.update_buffer = mb.simulate_rollout(
|
|
BUFFER_INIT_SAMPLES, policy.behavior_spec
|
|
)
|
|
buffer_len = trainer.update_buffer.num_experiences
|
|
trainer.save_model()
|
|
|
|
# Wipe Trainer and try to load
|
|
trainer2 = SACTrainer("test", 1, trainer_params, True, True, 0, "testdir")
|
|
|
|
policy = trainer2.create_policy(behavior_id, mock_specs)
|
|
trainer2.add_policy(behavior_id, policy)
|
|
assert trainer2.update_buffer.num_experiences == buffer_len
|
|
|
|
|
|
@mock.patch.object(RLTrainer, "create_model_saver")
|
|
@mock.patch("mlagents.trainers.sac.trainer.SACOptimizer")
|
|
def test_add_get_policy(sac_optimizer, mock_create_model_saver, dummy_config):
|
|
mock_optimizer = mock.Mock()
|
|
mock_optimizer.reward_signals = {}
|
|
sac_optimizer.return_value = mock_optimizer
|
|
|
|
trainer = SACTrainer("test", 0, dummy_config, True, False, 0, "0")
|
|
policy = mock.Mock(spec=TFPolicy)
|
|
policy.get_current_step.return_value = 2000
|
|
behavior_id = BehaviorIdentifiers.from_name_behavior_id(trainer.brain_name)
|
|
trainer.add_policy(behavior_id, policy)
|
|
assert trainer.get_policy(behavior_id.behavior_id) == policy
|
|
|
|
# Make sure the summary steps were loaded properly
|
|
assert trainer.get_step == 2000
|
|
|
|
|
|
def test_advance(dummy_config):
|
|
specs = setup_test_behavior_specs(
|
|
use_discrete=False, use_visual=False, vector_action_space=2
|
|
)
|
|
dummy_config.hyperparameters.steps_per_update = 20
|
|
dummy_config.hyperparameters.reward_signal_steps_per_update = 20
|
|
dummy_config.hyperparameters.buffer_init_steps = 0
|
|
trainer = SACTrainer("test", 0, dummy_config, True, False, 0, "0")
|
|
behavior_id = BehaviorIdentifiers.from_name_behavior_id(trainer.brain_name)
|
|
policy = trainer.create_policy(behavior_id, specs)
|
|
trainer.add_policy(behavior_id, policy)
|
|
|
|
trajectory_queue = AgentManagerQueue("testbrain")
|
|
policy_queue = AgentManagerQueue("testbrain")
|
|
trainer.subscribe_trajectory_queue(trajectory_queue)
|
|
trainer.publish_policy_queue(policy_queue)
|
|
|
|
trajectory = make_fake_trajectory(
|
|
length=15,
|
|
observation_shapes=specs.observation_shapes,
|
|
max_step_complete=True,
|
|
action_space=2,
|
|
is_discrete=False,
|
|
)
|
|
trajectory_queue.put(trajectory)
|
|
trainer.advance()
|
|
|
|
# Check that trainer put trajectory in update buffer
|
|
assert trainer.update_buffer.num_experiences == 15
|
|
|
|
# Check that the stats are being collected as episode isn't complete
|
|
for reward in trainer.collected_rewards.values():
|
|
for agent in reward.values():
|
|
assert agent > 0
|
|
|
|
# Add a terminal trajectory
|
|
trajectory = make_fake_trajectory(
|
|
length=6,
|
|
observation_shapes=specs.observation_shapes,
|
|
max_step_complete=False,
|
|
action_space=2,
|
|
is_discrete=False,
|
|
)
|
|
trajectory_queue.put(trajectory)
|
|
trainer.advance()
|
|
|
|
# Check that the stats are reset as episode is finished
|
|
for reward in trainer.collected_rewards.values():
|
|
for agent in reward.values():
|
|
assert agent == 0
|
|
assert trainer.stats_reporter.get_stats_summaries("Policy/Extrinsic Reward").num > 0
|
|
# Assert we're not just using the default values
|
|
assert (
|
|
trainer.stats_reporter.get_stats_summaries("Policy/Extrinsic Reward").mean > 0
|
|
)
|
|
|
|
# Make sure there is a policy on the queue
|
|
policy_queue.get_nowait()
|
|
|
|
# Add another trajectory. Since this is less than 20 steps total (enough for)
|
|
# two updates, there should NOT be a policy on the queue.
|
|
trajectory = make_fake_trajectory(
|
|
length=5,
|
|
observation_shapes=specs.observation_shapes,
|
|
max_step_complete=False,
|
|
action_space=2,
|
|
is_discrete=False,
|
|
)
|
|
trajectory_queue.put(trajectory)
|
|
trainer.advance()
|
|
with pytest.raises(AgentManagerQueue.Empty):
|
|
policy_queue.get_nowait()
|
|
|
|
# Call add_policy and check that we update the correct number of times.
|
|
# This is to emulate a load from checkpoint.
|
|
behavior_id = BehaviorIdentifiers.from_name_behavior_id(trainer.brain_name)
|
|
policy = trainer.create_policy(behavior_id, specs)
|
|
policy.get_current_step = lambda: 200
|
|
trainer.add_policy(behavior_id, policy)
|
|
trainer.optimizer.update = mock.Mock()
|
|
trainer.model_saver.initialize_or_load(policy)
|
|
trainer.optimizer.update_reward_signals = mock.Mock()
|
|
trainer.optimizer.update_reward_signals.return_value = {}
|
|
trainer.optimizer.update.return_value = {}
|
|
trajectory_queue.put(trajectory)
|
|
trainer.advance()
|
|
# Make sure we did exactly 1 update
|
|
assert trainer.optimizer.update.call_count == 1
|
|
assert trainer.optimizer.update_reward_signals.call_count == 1
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main()
|