您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
176 行
5.8 KiB
176 行
5.8 KiB
import pytest
|
|
|
|
import mlagents.trainers.tests.mock_brain as mb
|
|
from mlagents.trainers.policy.tf_policy import TFPolicy
|
|
from mlagents.trainers.sac.optimizer_tf import SACOptimizer
|
|
from mlagents.trainers.ppo.optimizer_tf import PPOOptimizer
|
|
from mlagents.trainers.tests.dummy_config import ( # noqa: F401; pylint: disable=unused-variable
|
|
ppo_dummy_config,
|
|
sac_dummy_config,
|
|
gail_dummy_config,
|
|
curiosity_dummy_config,
|
|
extrinsic_dummy_config,
|
|
DISCRETE_DEMO_PATH,
|
|
CONTINUOUS_DEMO_PATH,
|
|
)
|
|
from mlagents.trainers.settings import (
|
|
GAILSettings,
|
|
BehavioralCloningSettings,
|
|
NetworkSettings,
|
|
TrainerType,
|
|
RewardSignalType,
|
|
)
|
|
|
|
|
|
VECTOR_ACTION_SPACE = 2
|
|
VECTOR_OBS_SPACE = 8
|
|
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
|
|
BUFFER_INIT_SAMPLES = 20
|
|
BATCH_SIZE = 12
|
|
NUM_AGENTS = 12
|
|
|
|
|
|
def create_optimizer_mock(
|
|
trainer_config, reward_signal_config, use_rnn, use_discrete, use_visual
|
|
):
|
|
mock_specs = mb.setup_test_behavior_specs(
|
|
use_discrete,
|
|
use_visual,
|
|
vector_action_space=DISCRETE_ACTION_SPACE
|
|
if use_discrete
|
|
else VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE if not use_visual else 0,
|
|
)
|
|
trainer_settings = trainer_config
|
|
trainer_settings.reward_signals = reward_signal_config
|
|
trainer_settings.network_settings.memory = (
|
|
NetworkSettings.MemorySettings(sequence_length=16, memory_size=10)
|
|
if use_rnn
|
|
else None
|
|
)
|
|
policy = TFPolicy(
|
|
0, mock_specs, trainer_settings, "test", False, create_tf_graph=False
|
|
)
|
|
if trainer_settings.trainer_type == TrainerType.SAC:
|
|
optimizer = SACOptimizer(policy, trainer_settings)
|
|
else:
|
|
optimizer = PPOOptimizer(policy, trainer_settings)
|
|
optimizer.policy.initialize()
|
|
return optimizer
|
|
|
|
|
|
def reward_signal_eval(optimizer, reward_signal_name):
|
|
buffer = mb.simulate_rollout(BATCH_SIZE, optimizer.policy.behavior_spec)
|
|
# Test evaluate
|
|
rsig_result = optimizer.reward_signals[reward_signal_name].evaluate_batch(buffer)
|
|
assert rsig_result.scaled_reward.shape == (BATCH_SIZE,)
|
|
assert rsig_result.unscaled_reward.shape == (BATCH_SIZE,)
|
|
|
|
|
|
def reward_signal_update(optimizer, reward_signal_name):
|
|
buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, optimizer.policy.behavior_spec)
|
|
feed_dict = optimizer.reward_signals[reward_signal_name].prepare_update(
|
|
optimizer.policy, buffer.make_mini_batch(0, 10), 2
|
|
)
|
|
out = optimizer.policy._execute_model(
|
|
feed_dict, optimizer.reward_signals[reward_signal_name].update_dict
|
|
)
|
|
assert type(out) is dict
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
|
|
)
|
|
def test_gail_cc(trainer_config, gail_dummy_config): # noqa: F811
|
|
trainer_config.behavioral_cloning = BehavioralCloningSettings(
|
|
demo_path=CONTINUOUS_DEMO_PATH
|
|
)
|
|
optimizer = create_optimizer_mock(
|
|
trainer_config, gail_dummy_config, False, False, False
|
|
)
|
|
reward_signal_eval(optimizer, "gail")
|
|
reward_signal_update(optimizer, "gail")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
|
|
)
|
|
def test_gail_dc_visual(trainer_config, gail_dummy_config): # noqa: F811
|
|
gail_dummy_config_discrete = {
|
|
RewardSignalType.GAIL: GAILSettings(demo_path=DISCRETE_DEMO_PATH)
|
|
}
|
|
optimizer = create_optimizer_mock(
|
|
trainer_config, gail_dummy_config_discrete, False, True, True
|
|
)
|
|
reward_signal_eval(optimizer, "gail")
|
|
reward_signal_update(optimizer, "gail")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
|
|
)
|
|
def test_gail_rnn(trainer_config, gail_dummy_config): # noqa: F811
|
|
policy = create_optimizer_mock(
|
|
trainer_config, gail_dummy_config, True, False, False
|
|
)
|
|
reward_signal_eval(policy, "gail")
|
|
reward_signal_update(policy, "gail")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
|
|
)
|
|
def test_curiosity_cc(trainer_config, curiosity_dummy_config): # noqa: F811
|
|
policy = create_optimizer_mock(
|
|
trainer_config, curiosity_dummy_config, False, False, False
|
|
)
|
|
reward_signal_eval(policy, "curiosity")
|
|
reward_signal_update(policy, "curiosity")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
|
|
)
|
|
def test_curiosity_dc(trainer_config, curiosity_dummy_config): # noqa: F811
|
|
policy = create_optimizer_mock(
|
|
trainer_config, curiosity_dummy_config, False, True, False
|
|
)
|
|
reward_signal_eval(policy, "curiosity")
|
|
reward_signal_update(policy, "curiosity")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
|
|
)
|
|
def test_curiosity_visual(trainer_config, curiosity_dummy_config): # noqa: F811
|
|
policy = create_optimizer_mock(
|
|
trainer_config, curiosity_dummy_config, False, False, True
|
|
)
|
|
reward_signal_eval(policy, "curiosity")
|
|
reward_signal_update(policy, "curiosity")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
|
|
)
|
|
def test_curiosity_rnn(trainer_config, curiosity_dummy_config): # noqa: F811
|
|
policy = create_optimizer_mock(
|
|
trainer_config, curiosity_dummy_config, True, False, False
|
|
)
|
|
reward_signal_eval(policy, "curiosity")
|
|
reward_signal_update(policy, "curiosity")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
|
|
)
|
|
def test_extrinsic(trainer_config, extrinsic_dummy_config): # noqa: F811
|
|
policy = create_optimizer_mock(
|
|
trainer_config, extrinsic_dummy_config, False, False, False
|
|
)
|
|
reward_signal_eval(policy, "extrinsic")
|
|
reward_signal_update(policy, "extrinsic")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main()
|