Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

36 行
1.2 KiB

import pytest
from mlagents.trainers.tf.models import ModelUtils
from mlagents.tf_utils import tf
from mlagents_envs.base_env import BehaviorSpec, ActionType
def create_behavior_spec(num_visual, num_vector, vector_size):
behavior_spec = BehaviorSpec(
[(84, 84, 3)] * int(num_visual) + [(vector_size,)] * int(num_vector),
ActionType.DISCRETE,
(1,),
)
return behavior_spec
@pytest.mark.parametrize("num_visual", [1, 2, 4])
@pytest.mark.parametrize("num_vector", [1, 2, 4])
def test_create_input_placeholders(num_vector, num_visual):
vec_size = 8
name_prefix = "test123"
bspec = create_behavior_spec(num_visual, num_vector, vec_size)
vec_in, vis_in = ModelUtils.create_input_placeholders(
bspec.observation_shapes, name_prefix=name_prefix
)
assert isinstance(vis_in, list)
assert len(vis_in) == num_visual
assert isinstance(vec_in, tf.Tensor)
assert vec_in.get_shape().as_list()[1] == num_vector * 8
# Check names contain prefix and vis shapes are correct
for _vis in vis_in:
assert _vis.get_shape().as_list() == [None, 84, 84, 3]
assert _vis.name.startswith(name_prefix)
assert vec_in.name.startswith(name_prefix)