您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
231 行
9.1 KiB
231 行
9.1 KiB
import os
|
|
from typing import List, Tuple
|
|
import numpy as np
|
|
from mlagents.trainers.buffer import AgentBuffer
|
|
from mlagents_envs.communicator_objects.agent_info_action_pair_pb2 import (
|
|
AgentInfoActionPairProto,
|
|
)
|
|
from mlagents.trainers.trajectory import SplitObservations
|
|
from mlagents_envs.rpc_utils import behavior_spec_from_proto, steps_from_proto
|
|
from mlagents_envs.base_env import BehaviorSpec
|
|
from mlagents_envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
|
|
from mlagents_envs.communicator_objects.demonstration_meta_pb2 import (
|
|
DemonstrationMetaProto,
|
|
)
|
|
from mlagents_envs.timers import timed, hierarchical_timer
|
|
from google.protobuf.internal.decoder import _DecodeVarint32 # type: ignore
|
|
from google.protobuf.internal.encoder import _EncodeVarint # type: ignore
|
|
|
|
|
|
INITIAL_POS = 33
|
|
SUPPORTED_DEMONSTRATION_VERSIONS = frozenset([0, 1])
|
|
|
|
|
|
@timed
|
|
def make_demo_buffer(
|
|
pair_infos: List[AgentInfoActionPairProto],
|
|
behavior_spec: BehaviorSpec,
|
|
sequence_length: int,
|
|
) -> AgentBuffer:
|
|
# Create and populate buffer using experiences
|
|
demo_raw_buffer = AgentBuffer()
|
|
demo_processed_buffer = AgentBuffer()
|
|
for idx, current_pair_info in enumerate(pair_infos):
|
|
if idx > len(pair_infos) - 2:
|
|
break
|
|
next_pair_info = pair_infos[idx + 1]
|
|
current_decision_step, current_terminal_step = steps_from_proto(
|
|
[current_pair_info.agent_info], behavior_spec
|
|
)
|
|
next_decision_step, next_terminal_step = steps_from_proto(
|
|
[next_pair_info.agent_info], behavior_spec
|
|
)
|
|
previous_action = (
|
|
np.array(pair_infos[idx].action_info.vector_actions, dtype=np.float32) * 0
|
|
)
|
|
if idx > 0:
|
|
previous_action = np.array(
|
|
pair_infos[idx - 1].action_info.vector_actions, dtype=np.float32
|
|
)
|
|
|
|
next_done = len(next_terminal_step) == 1
|
|
next_reward = 0
|
|
if len(next_terminal_step) == 1:
|
|
next_reward = next_terminal_step.reward[0]
|
|
else:
|
|
next_reward = next_decision_step.reward[0]
|
|
current_obs = None
|
|
if len(current_terminal_step) == 1:
|
|
current_obs = list(current_terminal_step.values())[0].obs
|
|
else:
|
|
current_obs = list(current_decision_step.values())[0].obs
|
|
|
|
demo_raw_buffer["done"].append(next_done)
|
|
demo_raw_buffer["rewards"].append(next_reward)
|
|
split_obs = SplitObservations.from_observations(current_obs)
|
|
for i, obs in enumerate(split_obs.visual_observations):
|
|
demo_raw_buffer["visual_obs%d" % i].append(obs)
|
|
demo_raw_buffer["vector_obs"].append(split_obs.vector_observations)
|
|
demo_raw_buffer["actions"].append(current_pair_info.action_info.vector_actions)
|
|
demo_raw_buffer["prev_action"].append(previous_action)
|
|
if next_done:
|
|
demo_raw_buffer.resequence_and_append(
|
|
demo_processed_buffer, batch_size=None, training_length=sequence_length
|
|
)
|
|
demo_raw_buffer.reset_agent()
|
|
demo_raw_buffer.resequence_and_append(
|
|
demo_processed_buffer, batch_size=None, training_length=sequence_length
|
|
)
|
|
return demo_processed_buffer
|
|
|
|
|
|
@timed
|
|
def demo_to_buffer(
|
|
file_path: str, sequence_length: int, expected_behavior_spec: BehaviorSpec = None
|
|
) -> Tuple[BehaviorSpec, AgentBuffer]:
|
|
"""
|
|
Loads demonstration file and uses it to fill training buffer.
|
|
:param file_path: Location of demonstration file (.demo).
|
|
:param sequence_length: Length of trajectories to fill buffer.
|
|
:return:
|
|
"""
|
|
behavior_spec, info_action_pair, _ = load_demonstration(file_path)
|
|
demo_buffer = make_demo_buffer(info_action_pair, behavior_spec, sequence_length)
|
|
if expected_behavior_spec:
|
|
# check action dimensions in demonstration match
|
|
if behavior_spec.action_shape != expected_behavior_spec.action_shape:
|
|
raise RuntimeError(
|
|
"The action dimensions {} in demonstration do not match the policy's {}.".format(
|
|
behavior_spec.action_shape, expected_behavior_spec.action_shape
|
|
)
|
|
)
|
|
# check the action types in demonstration match
|
|
if behavior_spec.action_type != expected_behavior_spec.action_type:
|
|
raise RuntimeError(
|
|
"The action type of {} in demonstration do not match the policy's {}.".format(
|
|
behavior_spec.action_type, expected_behavior_spec.action_type
|
|
)
|
|
)
|
|
# check observations match
|
|
if len(behavior_spec.observation_shapes) != len(
|
|
expected_behavior_spec.observation_shapes
|
|
):
|
|
raise RuntimeError(
|
|
"The demonstrations do not have the same number of observations as the policy."
|
|
)
|
|
else:
|
|
for i, (demo_obs, policy_obs) in enumerate(
|
|
zip(
|
|
behavior_spec.observation_shapes,
|
|
expected_behavior_spec.observation_shapes,
|
|
)
|
|
):
|
|
if demo_obs != policy_obs:
|
|
raise RuntimeError(
|
|
f"The shape {demo_obs} for observation {i} in demonstration \
|
|
do not match the policy's {policy_obs}."
|
|
)
|
|
return behavior_spec, demo_buffer
|
|
|
|
|
|
def get_demo_files(path: str) -> List[str]:
|
|
"""
|
|
Retrieves the demonstration file(s) from a path.
|
|
:param path: Path of demonstration file or directory.
|
|
:return: List of demonstration files
|
|
|
|
Raises errors if |path| is invalid.
|
|
"""
|
|
if os.path.isfile(path):
|
|
if not path.endswith(".demo"):
|
|
raise ValueError("The path provided is not a '.demo' file.")
|
|
return [path]
|
|
elif os.path.isdir(path):
|
|
paths = [
|
|
os.path.join(path, name)
|
|
for name in os.listdir(path)
|
|
if name.endswith(".demo")
|
|
]
|
|
if not paths:
|
|
raise ValueError("There are no '.demo' files in the provided directory.")
|
|
return paths
|
|
else:
|
|
raise FileNotFoundError(
|
|
f"The demonstration file or directory {path} does not exist."
|
|
)
|
|
|
|
|
|
@timed
|
|
def load_demonstration(
|
|
file_path: str,
|
|
) -> Tuple[BehaviorSpec, List[AgentInfoActionPairProto], int]:
|
|
"""
|
|
Loads and parses a demonstration file.
|
|
:param file_path: Location of demonstration file (.demo).
|
|
:return: BrainParameter and list of AgentInfoActionPairProto containing demonstration data.
|
|
"""
|
|
|
|
# First 32 bytes of file dedicated to meta-data.
|
|
file_paths = get_demo_files(file_path)
|
|
behavior_spec = None
|
|
brain_param_proto = None
|
|
info_action_pairs = []
|
|
total_expected = 0
|
|
for _file_path in file_paths:
|
|
with open(_file_path, "rb") as fp:
|
|
with hierarchical_timer("read_file"):
|
|
data = fp.read()
|
|
next_pos, pos, obs_decoded = 0, 0, 0
|
|
while pos < len(data):
|
|
next_pos, pos = _DecodeVarint32(data, pos)
|
|
if obs_decoded == 0:
|
|
meta_data_proto = DemonstrationMetaProto()
|
|
meta_data_proto.ParseFromString(data[pos : pos + next_pos])
|
|
if (
|
|
meta_data_proto.api_version
|
|
not in SUPPORTED_DEMONSTRATION_VERSIONS
|
|
):
|
|
raise RuntimeError(
|
|
f"Can't load Demonstration data from an unsupported version ({meta_data_proto.api_version})"
|
|
)
|
|
total_expected += meta_data_proto.number_steps
|
|
pos = INITIAL_POS
|
|
if obs_decoded == 1:
|
|
brain_param_proto = BrainParametersProto()
|
|
brain_param_proto.ParseFromString(data[pos : pos + next_pos])
|
|
pos += next_pos
|
|
if obs_decoded > 1:
|
|
agent_info_action = AgentInfoActionPairProto()
|
|
agent_info_action.ParseFromString(data[pos : pos + next_pos])
|
|
if behavior_spec is None:
|
|
behavior_spec = behavior_spec_from_proto(
|
|
brain_param_proto, agent_info_action.agent_info
|
|
)
|
|
info_action_pairs.append(agent_info_action)
|
|
if len(info_action_pairs) == total_expected:
|
|
break
|
|
pos += next_pos
|
|
obs_decoded += 1
|
|
if not behavior_spec:
|
|
raise RuntimeError(
|
|
f"No BrainParameters found in demonstration file at {file_path}."
|
|
)
|
|
return behavior_spec, info_action_pairs, total_expected
|
|
|
|
|
|
def write_delimited(f, message):
|
|
msg_string = message.SerializeToString()
|
|
msg_size = len(msg_string)
|
|
_EncodeVarint(f.write, msg_size)
|
|
f.write(msg_string)
|
|
|
|
|
|
def write_demo(demo_path, meta_data_proto, brain_param_proto, agent_info_protos):
|
|
with open(demo_path, "wb") as f:
|
|
# write metadata
|
|
write_delimited(f, meta_data_proto)
|
|
f.seek(INITIAL_POS)
|
|
write_delimited(f, brain_param_proto)
|
|
|
|
for agent in agent_info_protos:
|
|
write_delimited(f, agent)
|