您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
746 行
27 KiB
746 行
27 KiB
import warnings
|
|
|
|
import attr
|
|
import cattr
|
|
from typing import Dict, Optional, List, Any, DefaultDict, Mapping, Tuple, Union
|
|
from enum import Enum
|
|
import collections
|
|
import argparse
|
|
import abc
|
|
import numpy as np
|
|
import math
|
|
|
|
from mlagents.trainers.cli_utils import StoreConfigFile, DetectDefault, parser
|
|
from mlagents.trainers.cli_utils import load_config
|
|
from mlagents.trainers.exception import TrainerConfigError, TrainerConfigWarning
|
|
|
|
from mlagents_envs import logging_util
|
|
from mlagents_envs.side_channel.environment_parameters_channel import (
|
|
EnvironmentParametersChannel,
|
|
)
|
|
|
|
logger = logging_util.get_logger(__name__)
|
|
|
|
|
|
def check_and_structure(key: str, value: Any, class_type: type) -> Any:
|
|
attr_fields_dict = attr.fields_dict(class_type)
|
|
if key not in attr_fields_dict:
|
|
raise TrainerConfigError(
|
|
f"The option {key} was specified in your YAML file for {class_type.__name__}, but is invalid."
|
|
)
|
|
# Apply cattr structure to the values
|
|
return cattr.structure(value, attr_fields_dict[key].type)
|
|
|
|
|
|
def strict_to_cls(d: Mapping, t: type) -> Any:
|
|
if not isinstance(d, Mapping):
|
|
raise TrainerConfigError(f"Unsupported config {d} for {t.__name__}.")
|
|
d_copy: Dict[str, Any] = {}
|
|
d_copy.update(d)
|
|
for key, val in d_copy.items():
|
|
d_copy[key] = check_and_structure(key, val, t)
|
|
return t(**d_copy)
|
|
|
|
|
|
def defaultdict_to_dict(d: DefaultDict) -> Dict:
|
|
return {key: cattr.unstructure(val) for key, val in d.items()}
|
|
|
|
|
|
class TestingConfiguration:
|
|
use_torch = True
|
|
max_steps = 0
|
|
env_name = ""
|
|
device = "cpu"
|
|
|
|
|
|
class SerializationSettings:
|
|
convert_to_barracuda = True
|
|
convert_to_onnx = True
|
|
onnx_opset = 9
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class ExportableSettings:
|
|
def as_dict(self):
|
|
return cattr.unstructure(self)
|
|
|
|
|
|
class EncoderType(Enum):
|
|
SIMPLE = "simple"
|
|
NATURE_CNN = "nature_cnn"
|
|
RESNET = "resnet"
|
|
|
|
|
|
class ScheduleType(Enum):
|
|
CONSTANT = "constant"
|
|
LINEAR = "linear"
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class NetworkSettings:
|
|
@attr.s
|
|
class MemorySettings:
|
|
sequence_length: int = attr.ib(default=64)
|
|
memory_size: int = attr.ib(default=128)
|
|
|
|
@memory_size.validator
|
|
def _check_valid_memory_size(self, attribute, value):
|
|
if value <= 0:
|
|
raise TrainerConfigError(
|
|
"When using a recurrent network, memory size must be greater than 0."
|
|
)
|
|
elif value % 2 != 0:
|
|
raise TrainerConfigError(
|
|
"When using a recurrent network, memory size must be divisible by 2."
|
|
)
|
|
|
|
normalize: bool = False
|
|
hidden_units: int = 128
|
|
num_layers: int = 2
|
|
vis_encode_type: EncoderType = EncoderType.SIMPLE
|
|
memory: Optional[MemorySettings] = None
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class BehavioralCloningSettings:
|
|
demo_path: str
|
|
steps: int = 0
|
|
strength: float = 1.0
|
|
samples_per_update: int = 0
|
|
# Setting either of these to None will allow the Optimizer
|
|
# to decide these parameters, based on Trainer hyperparams
|
|
num_epoch: Optional[int] = None
|
|
batch_size: Optional[int] = None
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class HyperparamSettings:
|
|
batch_size: int = 1024
|
|
buffer_size: int = 10240
|
|
learning_rate: float = 3.0e-4
|
|
learning_rate_schedule: ScheduleType = ScheduleType.CONSTANT
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class PPOSettings(HyperparamSettings):
|
|
beta: float = 5.0e-3
|
|
epsilon: float = 0.2
|
|
lambd: float = 0.95
|
|
num_epoch: int = 3
|
|
learning_rate_schedule: ScheduleType = ScheduleType.LINEAR
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class SACSettings(HyperparamSettings):
|
|
batch_size: int = 128
|
|
buffer_size: int = 50000
|
|
buffer_init_steps: int = 0
|
|
tau: float = 0.005
|
|
steps_per_update: float = 1
|
|
save_replay_buffer: bool = False
|
|
init_entcoef: float = 1.0
|
|
reward_signal_steps_per_update: float = attr.ib()
|
|
|
|
@reward_signal_steps_per_update.default
|
|
def _reward_signal_steps_per_update_default(self):
|
|
return self.steps_per_update
|
|
|
|
|
|
# INTRINSIC REWARD SIGNALS #############################################################
|
|
class RewardSignalType(Enum):
|
|
EXTRINSIC: str = "extrinsic"
|
|
GAIL: str = "gail"
|
|
CURIOSITY: str = "curiosity"
|
|
|
|
def to_settings(self) -> type:
|
|
_mapping = {
|
|
RewardSignalType.EXTRINSIC: RewardSignalSettings,
|
|
RewardSignalType.GAIL: GAILSettings,
|
|
RewardSignalType.CURIOSITY: CuriositySettings,
|
|
}
|
|
return _mapping[self]
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class RewardSignalSettings:
|
|
gamma: float = 0.99
|
|
strength: float = 1.0
|
|
|
|
@staticmethod
|
|
def structure(d: Mapping, t: type) -> Any:
|
|
"""
|
|
Helper method to structure a Dict of RewardSignalSettings class. Meant to be registered with
|
|
cattr.register_structure_hook() and called with cattr.structure(). This is needed to handle
|
|
the special Enum selection of RewardSignalSettings classes.
|
|
"""
|
|
if not isinstance(d, Mapping):
|
|
raise TrainerConfigError(f"Unsupported reward signal configuration {d}.")
|
|
d_final: Dict[RewardSignalType, RewardSignalSettings] = {}
|
|
for key, val in d.items():
|
|
enum_key = RewardSignalType(key)
|
|
t = enum_key.to_settings()
|
|
d_final[enum_key] = strict_to_cls(val, t)
|
|
return d_final
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class GAILSettings(RewardSignalSettings):
|
|
encoding_size: int = 64
|
|
learning_rate: float = 3e-4
|
|
use_actions: bool = False
|
|
use_vail: bool = False
|
|
demo_path: str = attr.ib(kw_only=True)
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class CuriositySettings(RewardSignalSettings):
|
|
encoding_size: int = 64
|
|
learning_rate: float = 3e-4
|
|
|
|
|
|
# SAMPLERS #############################################################################
|
|
class ParameterRandomizationType(Enum):
|
|
UNIFORM: str = "uniform"
|
|
GAUSSIAN: str = "gaussian"
|
|
MULTIRANGEUNIFORM: str = "multirangeuniform"
|
|
CONSTANT: str = "constant"
|
|
|
|
def to_settings(self) -> type:
|
|
_mapping = {
|
|
ParameterRandomizationType.UNIFORM: UniformSettings,
|
|
ParameterRandomizationType.GAUSSIAN: GaussianSettings,
|
|
ParameterRandomizationType.MULTIRANGEUNIFORM: MultiRangeUniformSettings,
|
|
ParameterRandomizationType.CONSTANT: ConstantSettings
|
|
# Constant type is handled if a float is provided instead of a config
|
|
}
|
|
return _mapping[self]
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class ParameterRandomizationSettings(abc.ABC):
|
|
seed: int = parser.get_default("seed")
|
|
|
|
@staticmethod
|
|
def structure(
|
|
d: Union[Mapping, float], t: type
|
|
) -> "ParameterRandomizationSettings":
|
|
"""
|
|
Helper method to a ParameterRandomizationSettings class. Meant to be registered with
|
|
cattr.register_structure_hook() and called with cattr.structure(). This is needed to handle
|
|
the special Enum selection of ParameterRandomizationSettings classes.
|
|
"""
|
|
if isinstance(d, (float, int)):
|
|
return ConstantSettings(value=d)
|
|
if not isinstance(d, Mapping):
|
|
raise TrainerConfigError(
|
|
f"Unsupported parameter randomization configuration {d}."
|
|
)
|
|
if "sampler_type" not in d:
|
|
raise TrainerConfigError(
|
|
f"Sampler configuration does not contain sampler_type : {d}."
|
|
)
|
|
if "sampler_parameters" not in d:
|
|
raise TrainerConfigError(
|
|
f"Sampler configuration does not contain sampler_parameters : {d}."
|
|
)
|
|
enum_key = ParameterRandomizationType(d["sampler_type"])
|
|
t = enum_key.to_settings()
|
|
return strict_to_cls(d["sampler_parameters"], t)
|
|
|
|
@staticmethod
|
|
def unstructure(d: "ParameterRandomizationSettings") -> Mapping:
|
|
"""
|
|
Helper method to a ParameterRandomizationSettings class. Meant to be registered with
|
|
cattr.register_unstructure_hook() and called with cattr.unstructure().
|
|
"""
|
|
_reversed_mapping = {
|
|
UniformSettings: ParameterRandomizationType.UNIFORM,
|
|
GaussianSettings: ParameterRandomizationType.GAUSSIAN,
|
|
MultiRangeUniformSettings: ParameterRandomizationType.MULTIRANGEUNIFORM,
|
|
ConstantSettings: ParameterRandomizationType.CONSTANT,
|
|
}
|
|
sampler_type: Optional[str] = None
|
|
for t, name in _reversed_mapping.items():
|
|
if isinstance(d, t):
|
|
sampler_type = name.value
|
|
sampler_parameters = attr.asdict(d)
|
|
return {"sampler_type": sampler_type, "sampler_parameters": sampler_parameters}
|
|
|
|
@abc.abstractmethod
|
|
def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None:
|
|
"""
|
|
Helper method to send sampler settings over EnvironmentParametersChannel
|
|
Calls the appropriate sampler type set method.
|
|
:param key: environment parameter to be sampled
|
|
:param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment
|
|
"""
|
|
pass
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class ConstantSettings(ParameterRandomizationSettings):
|
|
value: float = 0.0
|
|
|
|
def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None:
|
|
"""
|
|
Helper method to send sampler settings over EnvironmentParametersChannel
|
|
Calls the constant sampler type set method.
|
|
:param key: environment parameter to be sampled
|
|
:param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment
|
|
"""
|
|
env_channel.set_float_parameter(key, self.value)
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class UniformSettings(ParameterRandomizationSettings):
|
|
min_value: float = attr.ib()
|
|
max_value: float = 1.0
|
|
|
|
@min_value.default
|
|
def _min_value_default(self):
|
|
return 0.0
|
|
|
|
@min_value.validator
|
|
def _check_min_value(self, attribute, value):
|
|
if self.min_value > self.max_value:
|
|
raise TrainerConfigError(
|
|
"Minimum value is greater than maximum value in uniform sampler."
|
|
)
|
|
|
|
def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None:
|
|
"""
|
|
Helper method to send sampler settings over EnvironmentParametersChannel
|
|
Calls the uniform sampler type set method.
|
|
:param key: environment parameter to be sampled
|
|
:param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment
|
|
"""
|
|
env_channel.set_uniform_sampler_parameters(
|
|
key, self.min_value, self.max_value, self.seed
|
|
)
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class GaussianSettings(ParameterRandomizationSettings):
|
|
mean: float = 1.0
|
|
st_dev: float = 1.0
|
|
|
|
def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None:
|
|
"""
|
|
Helper method to send sampler settings over EnvironmentParametersChannel
|
|
Calls the gaussian sampler type set method.
|
|
:param key: environment parameter to be sampled
|
|
:param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment
|
|
"""
|
|
env_channel.set_gaussian_sampler_parameters(
|
|
key, self.mean, self.st_dev, self.seed
|
|
)
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class MultiRangeUniformSettings(ParameterRandomizationSettings):
|
|
intervals: List[Tuple[float, float]] = attr.ib()
|
|
|
|
@intervals.default
|
|
def _intervals_default(self):
|
|
return [[0.0, 1.0]]
|
|
|
|
@intervals.validator
|
|
def _check_intervals(self, attribute, value):
|
|
for interval in self.intervals:
|
|
if len(interval) != 2:
|
|
raise TrainerConfigError(
|
|
f"The sampling interval {interval} must contain exactly two values."
|
|
)
|
|
min_value, max_value = interval
|
|
if min_value > max_value:
|
|
raise TrainerConfigError(
|
|
f"Minimum value is greater than maximum value in interval {interval}."
|
|
)
|
|
|
|
def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None:
|
|
"""
|
|
Helper method to send sampler settings over EnvironmentParametersChannel
|
|
Calls the multirangeuniform sampler type set method.
|
|
:param key: environment parameter to be sampled
|
|
:param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment
|
|
"""
|
|
env_channel.set_multirangeuniform_sampler_parameters(
|
|
key, self.intervals, self.seed
|
|
)
|
|
|
|
|
|
# ENVIRONMENT PARAMETERS ###############################################################
|
|
@attr.s(auto_attribs=True)
|
|
class CompletionCriteriaSettings:
|
|
"""
|
|
CompletionCriteriaSettings contains the information needed to figure out if the next
|
|
lesson must start.
|
|
"""
|
|
|
|
class MeasureType(Enum):
|
|
PROGRESS: str = "progress"
|
|
REWARD: str = "reward"
|
|
|
|
behavior: str
|
|
measure: MeasureType = attr.ib(default=MeasureType.REWARD)
|
|
min_lesson_length: int = 0
|
|
signal_smoothing: bool = True
|
|
threshold: float = attr.ib(default=0.0)
|
|
require_reset: bool = False
|
|
|
|
@threshold.validator
|
|
def _check_threshold_value(self, attribute, value):
|
|
"""
|
|
Verify that the threshold has a value between 0 and 1 when the measure is
|
|
PROGRESS
|
|
"""
|
|
if self.measure == self.MeasureType.PROGRESS:
|
|
if self.threshold > 1.0:
|
|
raise TrainerConfigError(
|
|
"Threshold for next lesson cannot be greater than 1 when the measure is progress."
|
|
)
|
|
if self.threshold < 0.0:
|
|
raise TrainerConfigError(
|
|
"Threshold for next lesson cannot be negative when the measure is progress."
|
|
)
|
|
|
|
def need_increment(
|
|
self, progress: float, reward_buffer: List[float], smoothing: float
|
|
) -> Tuple[bool, float]:
|
|
"""
|
|
Given measures, this method returns a boolean indicating if the lesson
|
|
needs to change now, and a float corresponding to the new smoothed value.
|
|
"""
|
|
# Is the min number of episodes reached
|
|
if len(reward_buffer) < self.min_lesson_length:
|
|
return False, smoothing
|
|
if self.measure == CompletionCriteriaSettings.MeasureType.PROGRESS:
|
|
if progress > self.threshold:
|
|
return True, smoothing
|
|
if self.measure == CompletionCriteriaSettings.MeasureType.REWARD:
|
|
if len(reward_buffer) < 1:
|
|
return False, smoothing
|
|
measure = np.mean(reward_buffer)
|
|
if math.isnan(measure):
|
|
return False, smoothing
|
|
if self.signal_smoothing:
|
|
measure = 0.25 * smoothing + 0.75 * measure
|
|
smoothing = measure
|
|
if measure > self.threshold:
|
|
return True, smoothing
|
|
return False, smoothing
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class Lesson:
|
|
"""
|
|
Gathers the data of one lesson for one environment parameter including its name,
|
|
the condition that must be fullfiled for the lesson to be completed and a sampler
|
|
for the environment parameter. If the completion_criteria is None, then this is
|
|
the last lesson in the curriculum.
|
|
"""
|
|
|
|
value: ParameterRandomizationSettings
|
|
name: str
|
|
completion_criteria: Optional[CompletionCriteriaSettings] = attr.ib(default=None)
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class EnvironmentParameterSettings:
|
|
"""
|
|
EnvironmentParameterSettings is an ordered list of lessons for one environment
|
|
parameter.
|
|
"""
|
|
|
|
curriculum: List[Lesson]
|
|
|
|
@staticmethod
|
|
def _check_lesson_chain(lessons, parameter_name):
|
|
"""
|
|
Ensures that when using curriculum, all non-terminal lessons have a valid
|
|
CompletionCriteria, and that the terminal lesson does not contain a CompletionCriteria.
|
|
"""
|
|
num_lessons = len(lessons)
|
|
for index, lesson in enumerate(lessons):
|
|
if index < num_lessons - 1 and lesson.completion_criteria is None:
|
|
raise TrainerConfigError(
|
|
f"A non-terminal lesson does not have a completion_criteria for {parameter_name}."
|
|
)
|
|
if index == num_lessons - 1 and lesson.completion_criteria is not None:
|
|
warnings.warn(
|
|
f"Your final lesson definition contains completion_criteria for {parameter_name}."
|
|
f"It will be ignored.",
|
|
TrainerConfigWarning,
|
|
)
|
|
|
|
@staticmethod
|
|
def structure(d: Mapping, t: type) -> Dict[str, "EnvironmentParameterSettings"]:
|
|
"""
|
|
Helper method to structure a Dict of EnvironmentParameterSettings class. Meant
|
|
to be registered with cattr.register_structure_hook() and called with
|
|
cattr.structure().
|
|
"""
|
|
if not isinstance(d, Mapping):
|
|
raise TrainerConfigError(
|
|
f"Unsupported parameter environment parameter settings {d}."
|
|
)
|
|
d_final: Dict[str, EnvironmentParameterSettings] = {}
|
|
for environment_parameter, environment_parameter_config in d.items():
|
|
if (
|
|
isinstance(environment_parameter_config, Mapping)
|
|
and "curriculum" in environment_parameter_config
|
|
):
|
|
d_final[environment_parameter] = strict_to_cls(
|
|
environment_parameter_config, EnvironmentParameterSettings
|
|
)
|
|
EnvironmentParameterSettings._check_lesson_chain(
|
|
d_final[environment_parameter].curriculum, environment_parameter
|
|
)
|
|
else:
|
|
sampler = ParameterRandomizationSettings.structure(
|
|
environment_parameter_config, ParameterRandomizationSettings
|
|
)
|
|
d_final[environment_parameter] = EnvironmentParameterSettings(
|
|
curriculum=[
|
|
Lesson(
|
|
completion_criteria=None,
|
|
value=sampler,
|
|
name=environment_parameter,
|
|
)
|
|
]
|
|
)
|
|
return d_final
|
|
|
|
|
|
# TRAINERS #############################################################################
|
|
@attr.s(auto_attribs=True)
|
|
class SelfPlaySettings:
|
|
save_steps: int = 20000
|
|
team_change: int = attr.ib()
|
|
|
|
@team_change.default
|
|
def _team_change_default(self):
|
|
# Assign team_change to about 4x save_steps
|
|
return self.save_steps * 5
|
|
|
|
swap_steps: int = 2000
|
|
window: int = 10
|
|
play_against_latest_model_ratio: float = 0.5
|
|
initial_elo: float = 1200.0
|
|
|
|
|
|
class TrainerType(Enum):
|
|
PPO: str = "ppo"
|
|
SAC: str = "sac"
|
|
|
|
def to_settings(self) -> type:
|
|
_mapping = {TrainerType.PPO: PPOSettings, TrainerType.SAC: SACSettings}
|
|
return _mapping[self]
|
|
|
|
|
|
class FrameworkType(Enum):
|
|
TENSORFLOW: str = "tensorflow"
|
|
PYTORCH: str = "pytorch"
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class TrainerSettings(ExportableSettings):
|
|
trainer_type: TrainerType = TrainerType.PPO
|
|
hyperparameters: HyperparamSettings = attr.ib()
|
|
|
|
@hyperparameters.default
|
|
def _set_default_hyperparameters(self):
|
|
return self.trainer_type.to_settings()()
|
|
|
|
network_settings: NetworkSettings = attr.ib(factory=NetworkSettings)
|
|
reward_signals: Dict[RewardSignalType, RewardSignalSettings] = attr.ib(
|
|
factory=lambda: {RewardSignalType.EXTRINSIC: RewardSignalSettings()}
|
|
)
|
|
init_path: Optional[str] = None
|
|
keep_checkpoints: int = 5
|
|
checkpoint_interval: int = 500000
|
|
max_steps: int = 500000
|
|
time_horizon: int = 64
|
|
summary_freq: int = 50000
|
|
threaded: bool = True
|
|
self_play: Optional[SelfPlaySettings] = None
|
|
behavioral_cloning: Optional[BehavioralCloningSettings] = None
|
|
framework: FrameworkType = FrameworkType.TENSORFLOW
|
|
|
|
cattr.register_structure_hook(
|
|
Dict[RewardSignalType, RewardSignalSettings], RewardSignalSettings.structure
|
|
)
|
|
|
|
@network_settings.validator
|
|
def _check_batch_size_seq_length(self, attribute, value):
|
|
if self.network_settings.memory is not None:
|
|
if (
|
|
self.network_settings.memory.sequence_length
|
|
> self.hyperparameters.batch_size
|
|
):
|
|
raise TrainerConfigError(
|
|
"When using memory, sequence length must be less than or equal to batch size. "
|
|
)
|
|
|
|
@staticmethod
|
|
def dict_to_defaultdict(d: Dict, t: type) -> DefaultDict:
|
|
return collections.defaultdict(
|
|
TrainerSettings, cattr.structure(d, Dict[str, TrainerSettings])
|
|
)
|
|
|
|
@staticmethod
|
|
def structure(d: Mapping, t: type) -> Any:
|
|
"""
|
|
Helper method to structure a TrainerSettings class. Meant to be registered with
|
|
cattr.register_structure_hook() and called with cattr.structure().
|
|
"""
|
|
if not isinstance(d, Mapping):
|
|
raise TrainerConfigError(f"Unsupported config {d} for {t.__name__}.")
|
|
d_copy: Dict[str, Any] = {}
|
|
d_copy.update(d)
|
|
|
|
for key, val in d_copy.items():
|
|
if attr.has(type(val)):
|
|
# Don't convert already-converted attrs classes.
|
|
continue
|
|
if key == "hyperparameters":
|
|
if "trainer_type" not in d_copy:
|
|
raise TrainerConfigError(
|
|
"Hyperparameters were specified but no trainer_type was given."
|
|
)
|
|
else:
|
|
d_copy[key] = strict_to_cls(
|
|
d_copy[key], TrainerType(d_copy["trainer_type"]).to_settings()
|
|
)
|
|
elif key == "max_steps":
|
|
d_copy[key] = int(float(val))
|
|
# In some legacy configs, max steps was specified as a float
|
|
else:
|
|
d_copy[key] = check_and_structure(key, val, t)
|
|
return t(**d_copy)
|
|
|
|
|
|
# COMMAND LINE #########################################################################
|
|
@attr.s(auto_attribs=True)
|
|
class CheckpointSettings:
|
|
run_id: str = parser.get_default("run_id")
|
|
initialize_from: Optional[str] = parser.get_default("initialize_from")
|
|
load_model: bool = parser.get_default("load_model")
|
|
resume: bool = parser.get_default("resume")
|
|
force: bool = parser.get_default("force")
|
|
train_model: bool = parser.get_default("train_model")
|
|
inference: bool = parser.get_default("inference")
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class EnvironmentSettings:
|
|
env_path: Optional[str] = parser.get_default("env_path")
|
|
env_args: Optional[List[str]] = parser.get_default("env_args")
|
|
base_port: int = parser.get_default("base_port")
|
|
num_envs: int = attr.ib(default=parser.get_default("num_envs"))
|
|
seed: int = parser.get_default("seed")
|
|
|
|
@num_envs.validator
|
|
def validate_num_envs(self, attribute, value):
|
|
if value > 1 and self.env_path is None:
|
|
raise ValueError("num_envs must be 1 if env_path is not set.")
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class EngineSettings:
|
|
width: int = parser.get_default("width")
|
|
height: int = parser.get_default("height")
|
|
quality_level: int = parser.get_default("quality_level")
|
|
time_scale: float = parser.get_default("time_scale")
|
|
target_frame_rate: int = parser.get_default("target_frame_rate")
|
|
capture_frame_rate: int = parser.get_default("capture_frame_rate")
|
|
no_graphics: bool = parser.get_default("no_graphics")
|
|
|
|
|
|
@attr.s(auto_attribs=True)
|
|
class RunOptions(ExportableSettings):
|
|
behaviors: DefaultDict[str, TrainerSettings] = attr.ib(
|
|
factory=lambda: collections.defaultdict(TrainerSettings)
|
|
)
|
|
env_settings: EnvironmentSettings = attr.ib(factory=EnvironmentSettings)
|
|
engine_settings: EngineSettings = attr.ib(factory=EngineSettings)
|
|
environment_parameters: Optional[Dict[str, EnvironmentParameterSettings]] = None
|
|
checkpoint_settings: CheckpointSettings = attr.ib(factory=CheckpointSettings)
|
|
|
|
# These are options that are relevant to the run itself, and not the engine or environment.
|
|
# They will be left here.
|
|
debug: bool = parser.get_default("debug")
|
|
# Strict conversion
|
|
cattr.register_structure_hook(EnvironmentSettings, strict_to_cls)
|
|
cattr.register_structure_hook(EngineSettings, strict_to_cls)
|
|
cattr.register_structure_hook(CheckpointSettings, strict_to_cls)
|
|
cattr.register_structure_hook(
|
|
Dict[str, EnvironmentParameterSettings], EnvironmentParameterSettings.structure
|
|
)
|
|
cattr.register_structure_hook(Lesson, strict_to_cls)
|
|
cattr.register_structure_hook(
|
|
ParameterRandomizationSettings, ParameterRandomizationSettings.structure
|
|
)
|
|
cattr.register_unstructure_hook(
|
|
ParameterRandomizationSettings, ParameterRandomizationSettings.unstructure
|
|
)
|
|
cattr.register_structure_hook(TrainerSettings, TrainerSettings.structure)
|
|
cattr.register_structure_hook(
|
|
DefaultDict[str, TrainerSettings], TrainerSettings.dict_to_defaultdict
|
|
)
|
|
cattr.register_unstructure_hook(collections.defaultdict, defaultdict_to_dict)
|
|
|
|
@staticmethod
|
|
def from_argparse(args: argparse.Namespace) -> "RunOptions":
|
|
"""
|
|
Takes an argparse.Namespace as specified in `parse_command_line`, loads input configuration files
|
|
from file paths, and converts to a RunOptions instance.
|
|
:param args: collection of command-line parameters passed to mlagents-learn
|
|
:return: RunOptions representing the passed in arguments, with trainer config, curriculum and sampler
|
|
configs loaded from files.
|
|
"""
|
|
argparse_args = vars(args)
|
|
config_path = StoreConfigFile.trainer_config_path
|
|
|
|
# Load YAML
|
|
configured_dict: Dict[str, Any] = {
|
|
"checkpoint_settings": {},
|
|
"env_settings": {},
|
|
"engine_settings": {},
|
|
}
|
|
if config_path is not None:
|
|
configured_dict.update(load_config(config_path))
|
|
|
|
# Use the YAML file values for all values not specified in the CLI.
|
|
for key in configured_dict.keys():
|
|
# Detect bad config options
|
|
if key not in attr.fields_dict(RunOptions):
|
|
raise TrainerConfigError(
|
|
"The option {} was specified in your YAML file, but is invalid.".format(
|
|
key
|
|
)
|
|
)
|
|
# Override with CLI args
|
|
# Keep deprecated --load working, TODO: remove
|
|
argparse_args["resume"] = argparse_args["resume"] or argparse_args["load_model"]
|
|
for key, val in argparse_args.items():
|
|
if key in DetectDefault.non_default_args:
|
|
if key in attr.fields_dict(CheckpointSettings):
|
|
configured_dict["checkpoint_settings"][key] = val
|
|
elif key in attr.fields_dict(EnvironmentSettings):
|
|
configured_dict["env_settings"][key] = val
|
|
elif key in attr.fields_dict(EngineSettings):
|
|
configured_dict["engine_settings"][key] = val
|
|
else: # Base options
|
|
configured_dict[key] = val
|
|
|
|
# Apply --torch retroactively
|
|
final_runoptions = RunOptions.from_dict(configured_dict)
|
|
if "torch" in DetectDefault.non_default_args:
|
|
for trainer_set in final_runoptions.behaviors.values():
|
|
trainer_set.framework = FrameworkType.PYTORCH
|
|
return final_runoptions
|
|
|
|
@staticmethod
|
|
def from_dict(options_dict: Dict[str, Any]) -> "RunOptions":
|
|
return cattr.structure(options_dict, RunOptions)
|