您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
360 行
13 KiB
360 行
13 KiB
from collections import defaultdict
|
|
from enum import Enum
|
|
from typing import List, Dict, NamedTuple, Any
|
|
import numpy as np
|
|
import abc
|
|
import os
|
|
import time
|
|
from threading import RLock
|
|
|
|
from mlagents_envs.side_channel.stats_side_channel import StatsAggregationMethod
|
|
|
|
from mlagents_envs.logging_util import get_logger
|
|
from mlagents_envs.timers import set_gauge
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from mlagents.torch_utils.globals import get_rank
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
def _dict_to_str(param_dict: Dict[str, Any], num_tabs: int) -> str:
|
|
"""
|
|
Takes a parameter dictionary and converts it to a human-readable string.
|
|
Recurses if there are multiple levels of dict. Used to print out hyperparameters.
|
|
|
|
:param param_dict: A Dictionary of key, value parameters.
|
|
:return: A string version of this dictionary.
|
|
"""
|
|
if not isinstance(param_dict, dict):
|
|
return str(param_dict)
|
|
else:
|
|
append_newline = "\n" if num_tabs > 0 else ""
|
|
return append_newline + "\n".join(
|
|
[
|
|
"\t"
|
|
+ " " * num_tabs
|
|
+ "{}:\t{}".format(x, _dict_to_str(param_dict[x], num_tabs + 1))
|
|
for x in param_dict
|
|
]
|
|
)
|
|
|
|
|
|
class StatsSummary(NamedTuple):
|
|
full_dist: List[float]
|
|
aggregation_method: StatsAggregationMethod
|
|
|
|
@staticmethod
|
|
def empty() -> "StatsSummary":
|
|
return StatsSummary([], StatsAggregationMethod.AVERAGE)
|
|
|
|
@property
|
|
def aggregated_value(self):
|
|
if self.aggregation_method == StatsAggregationMethod.SUM:
|
|
return self.sum
|
|
else:
|
|
return self.mean
|
|
|
|
@property
|
|
def mean(self):
|
|
return np.mean(self.full_dist)
|
|
|
|
@property
|
|
def std(self):
|
|
return np.std(self.full_dist)
|
|
|
|
@property
|
|
def num(self):
|
|
return len(self.full_dist)
|
|
|
|
@property
|
|
def sum(self):
|
|
return np.sum(self.full_dist)
|
|
|
|
|
|
class StatsPropertyType(Enum):
|
|
HYPERPARAMETERS = "hyperparameters"
|
|
SELF_PLAY = "selfplay"
|
|
|
|
|
|
class StatsWriter(abc.ABC):
|
|
"""
|
|
A StatsWriter abstract class. A StatsWriter takes in a category, key, scalar value, and step
|
|
and writes it out by some method.
|
|
"""
|
|
|
|
@abc.abstractmethod
|
|
def write_stats(
|
|
self, category: str, values: Dict[str, StatsSummary], step: int
|
|
) -> None:
|
|
"""
|
|
Callback to record training information
|
|
:param category: Category of the statistics. Usually this is the behavior name.
|
|
:param values: Dictionary of statistics.
|
|
:param step: The current training step.
|
|
:return:
|
|
"""
|
|
pass
|
|
|
|
def add_property(
|
|
self, category: str, property_type: StatsPropertyType, value: Any
|
|
) -> None:
|
|
"""
|
|
Add a generic property to the StatsWriter. This could be e.g. a Dict of hyperparameters,
|
|
a max step count, a trainer type, etc. Note that not all StatsWriters need to be compatible
|
|
with all types of properties. For instance, a TB writer doesn't need a max step.
|
|
|
|
:param category: The category that the property belongs to.
|
|
:param property_type: The type of property.
|
|
:param value: The property itself.
|
|
"""
|
|
pass
|
|
|
|
|
|
class GaugeWriter(StatsWriter):
|
|
"""
|
|
Write all stats that we receive to the timer gauges, so we can track them offline easily
|
|
"""
|
|
|
|
@staticmethod
|
|
def sanitize_string(s: str) -> str:
|
|
"""
|
|
Clean up special characters in the category and value names.
|
|
"""
|
|
return s.replace("/", ".").replace(" ", "")
|
|
|
|
def write_stats(
|
|
self, category: str, values: Dict[str, StatsSummary], step: int
|
|
) -> None:
|
|
for val, stats_summary in values.items():
|
|
set_gauge(
|
|
GaugeWriter.sanitize_string(f"{category}.{val}.mean"),
|
|
float(stats_summary.mean),
|
|
)
|
|
set_gauge(
|
|
GaugeWriter.sanitize_string(f"{category}.{val}.sum"),
|
|
float(stats_summary.sum),
|
|
)
|
|
|
|
|
|
class ConsoleWriter(StatsWriter):
|
|
def __init__(self):
|
|
self.training_start_time = time.time()
|
|
# If self-play, we want to print ELO as well as reward
|
|
self.self_play = False
|
|
self.self_play_team = -1
|
|
self.rank = get_rank()
|
|
|
|
def write_stats(
|
|
self, category: str, values: Dict[str, StatsSummary], step: int
|
|
) -> None:
|
|
is_training = "Not Training"
|
|
if "Is Training" in values:
|
|
stats_summary = values["Is Training"]
|
|
if stats_summary.aggregated_value > 0.0:
|
|
is_training = "Training"
|
|
|
|
elapsed_time = time.time() - self.training_start_time
|
|
log_info: List[str] = [category]
|
|
log_info.append(f"Step: {step}")
|
|
log_info.append(f"Time Elapsed: {elapsed_time:0.3f} s")
|
|
if "Environment/Cumulative Reward" in values:
|
|
stats_summary = values["Environment/Cumulative Reward"]
|
|
if self.rank is not None:
|
|
log_info.append(f"Rank: {self.rank}")
|
|
|
|
log_info.append(f"Mean Reward: {stats_summary.mean:0.3f}")
|
|
if "Environment/Group Cumulative Reward" in values:
|
|
group_stats_summary = values["Environment/Group Cumulative Reward"]
|
|
log_info.append(f"Mean Group Reward: {group_stats_summary.mean:0.3f}")
|
|
else:
|
|
log_info.append(f"Std of Reward: {stats_summary.std:0.3f}")
|
|
log_info.append(is_training)
|
|
|
|
if self.self_play and "Self-play/ELO" in values:
|
|
elo_stats = values["Self-play/ELO"]
|
|
log_info.append(f"ELO: {elo_stats.mean:0.3f}")
|
|
else:
|
|
log_info.append("No episode was completed since last summary")
|
|
log_info.append(is_training)
|
|
logger.info(". ".join(log_info) + ".")
|
|
|
|
def add_property(
|
|
self, category: str, property_type: StatsPropertyType, value: Any
|
|
) -> None:
|
|
if property_type == StatsPropertyType.HYPERPARAMETERS:
|
|
logger.info(
|
|
"""Hyperparameters for behavior name {}: \n{}""".format(
|
|
category, _dict_to_str(value, 0)
|
|
)
|
|
)
|
|
elif property_type == StatsPropertyType.SELF_PLAY:
|
|
assert isinstance(value, bool)
|
|
self.self_play = value
|
|
|
|
|
|
class TensorboardWriter(StatsWriter):
|
|
def __init__(self, base_dir: str, clear_past_data: bool = False):
|
|
"""
|
|
A StatsWriter that writes to a Tensorboard summary.
|
|
|
|
:param base_dir: The directory within which to place all the summaries. Tensorboard files will be written to a
|
|
{base_dir}/{category} directory.
|
|
:param clear_past_data: Whether or not to clean up existing Tensorboard files associated with the base_dir and
|
|
category.
|
|
"""
|
|
self.summary_writers: Dict[str, SummaryWriter] = {}
|
|
self.base_dir: str = base_dir
|
|
self._clear_past_data = clear_past_data
|
|
|
|
def write_stats(
|
|
self, category: str, values: Dict[str, StatsSummary], step: int
|
|
) -> None:
|
|
self._maybe_create_summary_writer(category)
|
|
for key, value in values.items():
|
|
self.summary_writers[category].add_scalar(
|
|
f"{key}", value.aggregated_value, step
|
|
)
|
|
if value.aggregation_method == StatsAggregationMethod.HISTOGRAM:
|
|
self.summary_writers[category].add_histogram(
|
|
f"{key}_hist", np.array(value.full_dist), step
|
|
)
|
|
self.summary_writers[category].flush()
|
|
|
|
def _maybe_create_summary_writer(self, category: str) -> None:
|
|
if category not in self.summary_writers:
|
|
filewriter_dir = "{basedir}/{category}".format(
|
|
basedir=self.base_dir, category=category
|
|
)
|
|
os.makedirs(filewriter_dir, exist_ok=True)
|
|
if self._clear_past_data:
|
|
self._delete_all_events_files(filewriter_dir)
|
|
self.summary_writers[category] = SummaryWriter(filewriter_dir)
|
|
|
|
def _delete_all_events_files(self, directory_name: str) -> None:
|
|
for file_name in os.listdir(directory_name):
|
|
if file_name.startswith("events.out"):
|
|
logger.warning(
|
|
f"Deleting TensorBoard data {file_name} that was left over from a"
|
|
"previous run."
|
|
)
|
|
full_fname = os.path.join(directory_name, file_name)
|
|
try:
|
|
os.remove(full_fname)
|
|
except OSError:
|
|
logger.error(
|
|
"{} was left over from a previous run and "
|
|
"not deleted.".format(full_fname)
|
|
)
|
|
|
|
def add_property(
|
|
self, category: str, property_type: StatsPropertyType, value: Any
|
|
) -> None:
|
|
if property_type == StatsPropertyType.HYPERPARAMETERS:
|
|
assert isinstance(value, dict)
|
|
summary = _dict_to_str(value, 0)
|
|
self._maybe_create_summary_writer(category)
|
|
if summary is not None:
|
|
self.summary_writers[category].add_text("Hyperparameters", summary)
|
|
self.summary_writers[category].flush()
|
|
|
|
|
|
class StatsReporter:
|
|
writers: List[StatsWriter] = []
|
|
stats_dict: Dict[str, Dict[str, List]] = defaultdict(lambda: defaultdict(list))
|
|
lock = RLock()
|
|
stats_aggregation: Dict[str, Dict[str, StatsAggregationMethod]] = defaultdict(
|
|
lambda: defaultdict(lambda: StatsAggregationMethod.AVERAGE)
|
|
)
|
|
|
|
def __init__(self, category: str):
|
|
"""
|
|
Generic StatsReporter. A category is the broadest type of storage (would
|
|
correspond the run name and trainer name, e.g. 3DBalltest_3DBall. A key is the
|
|
type of stat it is (e.g. Environment/Reward). Finally the Value is the float value
|
|
attached to this stat.
|
|
"""
|
|
self.category: str = category
|
|
|
|
@staticmethod
|
|
def add_writer(writer: StatsWriter) -> None:
|
|
with StatsReporter.lock:
|
|
StatsReporter.writers.append(writer)
|
|
|
|
def add_property(self, property_type: StatsPropertyType, value: Any) -> None:
|
|
"""
|
|
Add a generic property to the StatsReporter. This could be e.g. a Dict of hyperparameters,
|
|
a max step count, a trainer type, etc. Note that not all StatsWriters need to be compatible
|
|
with all types of properties. For instance, a TB writer doesn't need a max step.
|
|
|
|
:param property_type: The type of property.
|
|
:param value: The property itself.
|
|
"""
|
|
with StatsReporter.lock:
|
|
for writer in StatsReporter.writers:
|
|
writer.add_property(self.category, property_type, value)
|
|
|
|
def add_stat(
|
|
self,
|
|
key: str,
|
|
value: float,
|
|
aggregation: StatsAggregationMethod = StatsAggregationMethod.AVERAGE,
|
|
) -> None:
|
|
"""
|
|
Add a float value stat to the StatsReporter.
|
|
|
|
:param key: The type of statistic, e.g. Environment/Reward.
|
|
:param value: the value of the statistic.
|
|
:param aggregation: the aggregation method for the statistic, default StatsAggregationMethod.AVERAGE.
|
|
"""
|
|
with StatsReporter.lock:
|
|
StatsReporter.stats_dict[self.category][key].append(value)
|
|
StatsReporter.stats_aggregation[self.category][key] = aggregation
|
|
|
|
def set_stat(self, key: str, value: float) -> None:
|
|
"""
|
|
Sets a stat value to a float. This is for values that we don't want to average, and just
|
|
want the latest.
|
|
|
|
:param key: The type of statistic, e.g. Environment/Reward.
|
|
:param value: the value of the statistic.
|
|
"""
|
|
with StatsReporter.lock:
|
|
StatsReporter.stats_dict[self.category][key] = [value]
|
|
StatsReporter.stats_aggregation[self.category][
|
|
key
|
|
] = StatsAggregationMethod.MOST_RECENT
|
|
|
|
def write_stats(self, step: int) -> None:
|
|
"""
|
|
Write out all stored statistics that fall under the category specified.
|
|
The currently stored values will be averaged, written out as a single value,
|
|
and the buffer cleared.
|
|
|
|
:param step: Training step which to write these stats as.
|
|
"""
|
|
with StatsReporter.lock:
|
|
values: Dict[str, StatsSummary] = {}
|
|
for key in StatsReporter.stats_dict[self.category]:
|
|
if len(StatsReporter.stats_dict[self.category][key]) > 0:
|
|
stat_summary = self.get_stats_summaries(key)
|
|
values[key] = stat_summary
|
|
for writer in StatsReporter.writers:
|
|
writer.write_stats(self.category, values, step)
|
|
del StatsReporter.stats_dict[self.category]
|
|
|
|
def get_stats_summaries(self, key: str) -> StatsSummary:
|
|
"""
|
|
Get the mean, std, count, sum and aggregation method of a particular statistic, since last write.
|
|
|
|
:param key: The type of statistic, e.g. Environment/Reward.
|
|
:returns: A StatsSummary containing summary statistics.
|
|
"""
|
|
stat_values = StatsReporter.stats_dict[self.category][key]
|
|
if len(stat_values) == 0:
|
|
return StatsSummary.empty()
|
|
|
|
return StatsSummary(
|
|
full_dist=stat_values,
|
|
aggregation_method=StatsReporter.stats_aggregation[self.category][key],
|
|
)
|