您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
132 行
5.6 KiB
132 行
5.6 KiB
from typing import Dict, Any
|
|
import numpy as np
|
|
|
|
from mlagents.trainers.policy.tf_policy import TFPolicy
|
|
from .model import BCModel
|
|
from mlagents.trainers.demo_loader import demo_to_buffer
|
|
from mlagents.trainers.settings import BehavioralCloningSettings
|
|
|
|
|
|
class BCModule:
|
|
def __init__(
|
|
self,
|
|
policy: TFPolicy,
|
|
settings: BehavioralCloningSettings,
|
|
policy_learning_rate: float,
|
|
default_batch_size: int,
|
|
default_num_epoch: int,
|
|
):
|
|
"""
|
|
A BC trainer that can be used inline with RL.
|
|
:param policy: The policy of the learning model
|
|
:param policy_learning_rate: The initial Learning Rate of the policy. Used to set an appropriate learning rate
|
|
for the pretrainer.
|
|
:param default_batch_size: The default batch size to use if batch_size isn't provided.
|
|
:param default_num_epoch: The default num_epoch to use if num_epoch isn't provided.
|
|
:param strength: The proportion of learning rate used to update through BC.
|
|
:param steps: The number of steps to anneal BC training over. 0 for continuous training.
|
|
:param demo_path: The path to the demonstration file.
|
|
:param batch_size: The batch size to use during BC training.
|
|
:param num_epoch: Number of epochs to train for during each update.
|
|
:param samples_per_update: Maximum number of samples to train on during each BC update.
|
|
"""
|
|
self.policy = policy
|
|
self.current_lr = policy_learning_rate * settings.strength
|
|
self.model = BCModel(policy, self.current_lr, settings.steps)
|
|
_, self.demonstration_buffer = demo_to_buffer(
|
|
settings.demo_path, policy.sequence_length, policy.brain
|
|
)
|
|
|
|
self.batch_size = (
|
|
settings.batch_size if settings.batch_size else default_batch_size
|
|
)
|
|
self.num_epoch = settings.num_epoch if settings.num_epoch else default_num_epoch
|
|
self.n_sequences = max(
|
|
min(self.batch_size, self.demonstration_buffer.num_experiences)
|
|
// policy.sequence_length,
|
|
1,
|
|
)
|
|
|
|
self.has_updated = False
|
|
self.use_recurrent = self.policy.use_recurrent
|
|
self.samples_per_update = settings.samples_per_update
|
|
self.out_dict = {
|
|
"loss": self.model.loss,
|
|
"update": self.model.update_batch,
|
|
"learning_rate": self.model.annealed_learning_rate,
|
|
}
|
|
|
|
def update(self) -> Dict[str, Any]:
|
|
"""
|
|
Updates model using buffer.
|
|
:param max_batches: The maximum number of batches to use per update.
|
|
:return: The loss of the update.
|
|
"""
|
|
# Don't continue training if the learning rate has reached 0, to reduce training time.
|
|
if self.current_lr <= 0:
|
|
return {"Losses/Pretraining Loss": 0}
|
|
|
|
batch_losses = []
|
|
possible_demo_batches = (
|
|
self.demonstration_buffer.num_experiences // self.n_sequences
|
|
)
|
|
possible_batches = possible_demo_batches
|
|
|
|
max_batches = self.samples_per_update // self.n_sequences
|
|
|
|
n_epoch = self.num_epoch
|
|
for _ in range(n_epoch):
|
|
self.demonstration_buffer.shuffle(
|
|
sequence_length=self.policy.sequence_length
|
|
)
|
|
if max_batches == 0:
|
|
num_batches = possible_batches
|
|
else:
|
|
num_batches = min(possible_batches, max_batches)
|
|
for i in range(num_batches // self.policy.sequence_length):
|
|
demo_update_buffer = self.demonstration_buffer
|
|
start = i * self.n_sequences * self.policy.sequence_length
|
|
end = (i + 1) * self.n_sequences * self.policy.sequence_length
|
|
mini_batch_demo = demo_update_buffer.make_mini_batch(start, end)
|
|
run_out = self._update_batch(mini_batch_demo, self.n_sequences)
|
|
loss = run_out["loss"]
|
|
self.current_lr = run_out["learning_rate"]
|
|
batch_losses.append(loss)
|
|
self.has_updated = True
|
|
update_stats = {"Losses/Pretraining Loss": np.mean(batch_losses)}
|
|
return update_stats
|
|
|
|
def _update_batch(
|
|
self, mini_batch_demo: Dict[str, Any], n_sequences: int
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Helper function for update_batch.
|
|
"""
|
|
feed_dict = {
|
|
self.policy.batch_size_ph: n_sequences,
|
|
self.policy.sequence_length_ph: self.policy.sequence_length,
|
|
}
|
|
feed_dict[self.model.action_in_expert] = mini_batch_demo["actions"]
|
|
if not self.policy.use_continuous_act:
|
|
feed_dict[self.policy.action_masks] = np.ones(
|
|
(
|
|
self.n_sequences * self.policy.sequence_length,
|
|
sum(self.policy.brain.vector_action_space_size),
|
|
),
|
|
dtype=np.float32,
|
|
)
|
|
if self.policy.brain.vector_observation_space_size > 0:
|
|
feed_dict[self.policy.vector_in] = mini_batch_demo["vector_obs"]
|
|
for i, _ in enumerate(self.policy.visual_in):
|
|
feed_dict[self.policy.visual_in[i]] = mini_batch_demo["visual_obs%d" % i]
|
|
if self.use_recurrent:
|
|
feed_dict[self.policy.memory_in] = np.zeros(
|
|
[self.n_sequences, self.policy.m_size], dtype=np.float32
|
|
)
|
|
if not self.policy.use_continuous_act:
|
|
feed_dict[self.policy.prev_action] = mini_batch_demo["prev_action"]
|
|
network_out = self.policy.sess.run(
|
|
list(self.out_dict.values()), feed_dict=feed_dict
|
|
)
|
|
run_out = dict(zip(list(self.out_dict.keys()), network_out))
|
|
return run_out
|