您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
125 行
3.8 KiB
125 行
3.8 KiB
from mlagents.torch_utils import torch
|
|
from unittest import mock
|
|
import pytest
|
|
|
|
from mlagents.trainers.torch.encoders import (
|
|
VectorInput,
|
|
Normalizer,
|
|
SmallVisualEncoder,
|
|
FullyConnectedVisualEncoder,
|
|
SimpleVisualEncoder,
|
|
ResNetVisualEncoder,
|
|
NatureVisualEncoder,
|
|
)
|
|
|
|
|
|
# This test will also reveal issues with states not being saved in the state_dict.
|
|
def compare_models(module_1, module_2):
|
|
is_same = True
|
|
for key_item_1, key_item_2 in zip(
|
|
module_1.state_dict().items(), module_2.state_dict().items()
|
|
):
|
|
# Compare tensors in state_dict and not the keys.
|
|
is_same = torch.equal(key_item_1[1], key_item_2[1]) and is_same
|
|
return is_same
|
|
|
|
|
|
def test_normalizer():
|
|
input_size = 2
|
|
norm = Normalizer(input_size)
|
|
|
|
# These three inputs should mean to 0.5, and variance 2
|
|
# with the steps starting at 1
|
|
vec_input1 = torch.tensor([[1, 1]])
|
|
vec_input2 = torch.tensor([[1, 1]])
|
|
vec_input3 = torch.tensor([[0, 0]])
|
|
norm.update(vec_input1)
|
|
norm.update(vec_input2)
|
|
norm.update(vec_input3)
|
|
|
|
# Test normalization
|
|
for val in norm(vec_input1)[0].tolist():
|
|
assert val == pytest.approx(0.707, abs=0.001)
|
|
|
|
# Test copy normalization
|
|
norm2 = Normalizer(input_size)
|
|
assert not compare_models(norm, norm2)
|
|
norm2.copy_from(norm)
|
|
assert compare_models(norm, norm2)
|
|
for val in norm2(vec_input1)[0].tolist():
|
|
assert val == pytest.approx(0.707, abs=0.001)
|
|
|
|
|
|
@mock.patch("mlagents.trainers.torch.encoders.Normalizer")
|
|
def test_vector_encoder(mock_normalizer):
|
|
mock_normalizer_inst = mock.Mock()
|
|
mock_normalizer.return_value = mock_normalizer_inst
|
|
input_size = 64
|
|
normalize = False
|
|
vector_encoder = VectorInput(input_size, normalize)
|
|
output = vector_encoder(torch.ones((1, input_size)))
|
|
assert output.shape == (1, input_size)
|
|
|
|
normalize = True
|
|
vector_encoder = VectorInput(input_size, normalize)
|
|
new_vec = torch.ones((1, input_size))
|
|
vector_encoder.update_normalization(new_vec)
|
|
|
|
mock_normalizer.assert_called_with(input_size)
|
|
mock_normalizer_inst.update.assert_called_with(new_vec)
|
|
|
|
vector_encoder2 = VectorInput(input_size, normalize)
|
|
vector_encoder.copy_normalization(vector_encoder2)
|
|
mock_normalizer_inst.copy_from.assert_called_with(mock_normalizer_inst)
|
|
|
|
|
|
@pytest.mark.parametrize("image_size", [(36, 36, 3), (84, 84, 4), (256, 256, 5)])
|
|
@pytest.mark.parametrize(
|
|
"vis_class",
|
|
[
|
|
SimpleVisualEncoder,
|
|
ResNetVisualEncoder,
|
|
NatureVisualEncoder,
|
|
SmallVisualEncoder,
|
|
FullyConnectedVisualEncoder,
|
|
],
|
|
)
|
|
def test_visual_encoder(vis_class, image_size):
|
|
num_outputs = 128
|
|
enc = vis_class(image_size[0], image_size[1], image_size[2], num_outputs)
|
|
# Note: NCHW not NHWC
|
|
sample_input = torch.ones((1, image_size[0], image_size[1], image_size[2]))
|
|
encoding = enc(sample_input)
|
|
assert encoding.shape == (1, num_outputs)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"vis_class, size",
|
|
[
|
|
(SimpleVisualEncoder, 36),
|
|
(ResNetVisualEncoder, 36),
|
|
(NatureVisualEncoder, 36),
|
|
(SmallVisualEncoder, 10),
|
|
(FullyConnectedVisualEncoder, 36),
|
|
],
|
|
)
|
|
@pytest.mark.check_environment_trains
|
|
def test_visual_encoder_trains(vis_class, size):
|
|
torch.manual_seed(0)
|
|
image_size = (size, size, 1)
|
|
batch = 100
|
|
|
|
inputs = torch.cat(
|
|
[torch.zeros((batch,) + image_size), torch.ones((batch,) + image_size)], dim=0
|
|
)
|
|
target = torch.cat([torch.zeros((batch,)), torch.ones((batch,))], dim=0)
|
|
enc = vis_class(image_size[0], image_size[1], image_size[2], 1)
|
|
optimizer = torch.optim.Adam(enc.parameters(), lr=0.001)
|
|
|
|
for _ in range(15):
|
|
prediction = enc(inputs)[:, 0]
|
|
loss = torch.mean((target - prediction) ** 2)
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
assert loss.item() < 0.05
|