您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
667 行
27 KiB
667 行
27 KiB
from typing import Dict, cast, List, Tuple, Optional
|
|
from collections import defaultdict
|
|
from mlagents.trainers.torch.components.reward_providers.extrinsic_reward_provider import (
|
|
ExtrinsicRewardProvider,
|
|
)
|
|
import numpy as np
|
|
from mlagents.torch_utils import torch, default_device
|
|
|
|
from mlagents.trainers.buffer import (
|
|
AgentBuffer,
|
|
BufferKey,
|
|
RewardSignalUtil,
|
|
AgentBufferField,
|
|
)
|
|
|
|
from mlagents_envs.timers import timed
|
|
from mlagents_envs.base_env import ObservationSpec, ActionSpec
|
|
from mlagents.trainers.policy.torch_policy import TorchPolicy
|
|
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer
|
|
from mlagents.trainers.settings import (
|
|
RewardSignalSettings,
|
|
RewardSignalType,
|
|
TrainerSettings,
|
|
POCASettings,
|
|
)
|
|
from mlagents.trainers.torch.networks import Critic, MultiAgentNetworkBody
|
|
from mlagents.trainers.torch.decoders import ValueHeads
|
|
from mlagents.trainers.torch.agent_action import AgentAction
|
|
from mlagents.trainers.torch.action_log_probs import ActionLogProbs
|
|
from mlagents.trainers.torch.utils import ModelUtils
|
|
from mlagents.trainers.trajectory import ObsUtil, GroupObsUtil
|
|
from mlagents.trainers.settings import NetworkSettings
|
|
|
|
from mlagents_envs.logging_util import get_logger
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
class TorchPOCAOptimizer(TorchOptimizer):
|
|
class POCAValueNetwork(torch.nn.Module, Critic):
|
|
"""
|
|
The POCAValueNetwork uses the MultiAgentNetworkBody to compute the value
|
|
and POCA baseline for a variable number of agents in a group that all
|
|
share the same observation and action space.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
stream_names: List[str],
|
|
observation_specs: List[ObservationSpec],
|
|
network_settings: NetworkSettings,
|
|
action_spec: ActionSpec,
|
|
):
|
|
torch.nn.Module.__init__(self)
|
|
self.network_body = MultiAgentNetworkBody(
|
|
observation_specs, network_settings, action_spec
|
|
)
|
|
if network_settings.memory is not None:
|
|
encoding_size = network_settings.memory.memory_size // 2
|
|
else:
|
|
encoding_size = network_settings.hidden_units
|
|
|
|
self.value_heads = ValueHeads(stream_names, encoding_size, 1)
|
|
|
|
@property
|
|
def memory_size(self) -> int:
|
|
return self.network_body.memory_size
|
|
|
|
def update_normalization(self, buffer: AgentBuffer) -> None:
|
|
self.network_body.update_normalization(buffer)
|
|
|
|
def baseline(
|
|
self,
|
|
obs_without_actions: List[torch.Tensor],
|
|
obs_with_actions: Tuple[List[List[torch.Tensor]], List[AgentAction]],
|
|
memories: Optional[torch.Tensor] = None,
|
|
sequence_length: int = 1,
|
|
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
|
|
"""
|
|
The POCA baseline marginalizes the action of the agent associated with self_obs.
|
|
It calls the forward pass of the MultiAgentNetworkBody with the state action
|
|
pairs of groupmates but just the state of the agent in question.
|
|
:param obs_without_actions: The obs of the agent for which to compute the baseline.
|
|
:param obs_with_actions: Tuple of observations and actions for all groupmates.
|
|
:param memories: If using memory, a Tensor of initial memories.
|
|
:param sequence_length: If using memory, the sequence length.
|
|
|
|
:return: A Tuple of Dict of reward stream to tensor and critic memories.
|
|
"""
|
|
(obs, actions) = obs_with_actions
|
|
encoding, memories = self.network_body(
|
|
obs_only=[obs_without_actions],
|
|
obs=obs,
|
|
actions=actions,
|
|
memories=memories,
|
|
sequence_length=sequence_length,
|
|
)
|
|
value_outputs, critic_mem_out = self.forward(
|
|
encoding, memories, sequence_length
|
|
)
|
|
return value_outputs, critic_mem_out
|
|
|
|
def critic_pass(
|
|
self,
|
|
obs: List[List[torch.Tensor]],
|
|
memories: Optional[torch.Tensor] = None,
|
|
sequence_length: int = 1,
|
|
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
|
|
"""
|
|
A centralized value function. It calls the forward pass of MultiAgentNetworkBody
|
|
with just the states of all agents.
|
|
:param obs: List of observations for all agents in group
|
|
:param memories: If using memory, a Tensor of initial memories.
|
|
:param sequence_length: If using memory, the sequence length.
|
|
:return: A Tuple of Dict of reward stream to tensor and critic memories.
|
|
"""
|
|
encoding, memories = self.network_body(
|
|
obs_only=obs,
|
|
obs=[],
|
|
actions=[],
|
|
memories=memories,
|
|
sequence_length=sequence_length,
|
|
)
|
|
value_outputs, critic_mem_out = self.forward(
|
|
encoding, memories, sequence_length
|
|
)
|
|
return value_outputs, critic_mem_out
|
|
|
|
def forward(
|
|
self,
|
|
encoding: torch.Tensor,
|
|
memories: Optional[torch.Tensor] = None,
|
|
sequence_length: int = 1,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
|
output = self.value_heads(encoding)
|
|
return output, memories
|
|
|
|
def __init__(self, policy: TorchPolicy, trainer_settings: TrainerSettings):
|
|
"""
|
|
Takes a Policy and a Dict of trainer parameters and creates an Optimizer around the policy.
|
|
:param policy: A TorchPolicy object that will be updated by this POCA Optimizer.
|
|
:param trainer_params: Trainer parameters dictionary that specifies the
|
|
properties of the trainer.
|
|
"""
|
|
# Create the graph here to give more granular control of the TF graph to the Optimizer.
|
|
|
|
super().__init__(policy, trainer_settings)
|
|
reward_signal_configs = trainer_settings.reward_signals
|
|
reward_signal_names = [key.value for key, _ in reward_signal_configs.items()]
|
|
|
|
self._critic = TorchPOCAOptimizer.POCAValueNetwork(
|
|
reward_signal_names,
|
|
policy.behavior_spec.observation_specs,
|
|
network_settings=trainer_settings.network_settings,
|
|
action_spec=policy.behavior_spec.action_spec,
|
|
)
|
|
# Move to GPU if needed
|
|
self._critic.to(default_device())
|
|
|
|
params = list(self.policy.actor.parameters()) + list(self.critic.parameters())
|
|
self.hyperparameters: POCASettings = cast(
|
|
POCASettings, trainer_settings.hyperparameters
|
|
)
|
|
self.decay_learning_rate = ModelUtils.DecayedValue(
|
|
self.hyperparameters.learning_rate_schedule,
|
|
self.hyperparameters.learning_rate,
|
|
1e-10,
|
|
self.trainer_settings.max_steps,
|
|
)
|
|
self.decay_epsilon = ModelUtils.DecayedValue(
|
|
self.hyperparameters.learning_rate_schedule,
|
|
self.hyperparameters.epsilon,
|
|
0.1,
|
|
self.trainer_settings.max_steps,
|
|
)
|
|
self.decay_beta = ModelUtils.DecayedValue(
|
|
self.hyperparameters.learning_rate_schedule,
|
|
self.hyperparameters.beta,
|
|
1e-5,
|
|
self.trainer_settings.max_steps,
|
|
)
|
|
|
|
self.optimizer = torch.optim.Adam(params)
|
|
self.stats_name_to_update_name = {
|
|
"Losses/Value Loss": "value_loss",
|
|
"Losses/Policy Loss": "policy_loss",
|
|
}
|
|
|
|
self.stream_names = list(self.reward_signals.keys())
|
|
self.value_memory_dict: Dict[str, torch.Tensor] = {}
|
|
self.baseline_memory_dict: Dict[str, torch.Tensor] = {}
|
|
|
|
def create_reward_signals(
|
|
self, reward_signal_configs: Dict[RewardSignalType, RewardSignalSettings]
|
|
) -> None:
|
|
"""
|
|
Create reward signals. Override default to provide warnings for Curiosity and
|
|
GAIL, and make sure Extrinsic adds team rewards.
|
|
:param reward_signal_configs: Reward signal config.
|
|
"""
|
|
for reward_signal in reward_signal_configs.keys():
|
|
if reward_signal != RewardSignalType.EXTRINSIC:
|
|
logger.warning(
|
|
f"Reward signal {reward_signal.value.capitalize()} is not supported with the POCA trainer; "
|
|
"results may be unexpected."
|
|
)
|
|
super().create_reward_signals(reward_signal_configs)
|
|
# Make sure we add the groupmate rewards in POCA, so agents learn how to help each
|
|
# other achieve individual rewards as well
|
|
for reward_provider in self.reward_signals.values():
|
|
if isinstance(reward_provider, ExtrinsicRewardProvider):
|
|
reward_provider.add_groupmate_rewards = True
|
|
|
|
@property
|
|
def critic(self):
|
|
return self._critic
|
|
|
|
@timed
|
|
def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]:
|
|
"""
|
|
Performs update on model.
|
|
:param batch: Batch of experiences.
|
|
:param num_sequences: Number of sequences to process.
|
|
:return: Results of update.
|
|
"""
|
|
# Get decayed parameters
|
|
decay_lr = self.decay_learning_rate.get_value(self.policy.get_current_step())
|
|
decay_eps = self.decay_epsilon.get_value(self.policy.get_current_step())
|
|
decay_bet = self.decay_beta.get_value(self.policy.get_current_step())
|
|
returns = {}
|
|
old_values = {}
|
|
old_baseline_values = {}
|
|
for name in self.reward_signals:
|
|
old_values[name] = ModelUtils.list_to_tensor(
|
|
batch[RewardSignalUtil.value_estimates_key(name)]
|
|
)
|
|
returns[name] = ModelUtils.list_to_tensor(
|
|
batch[RewardSignalUtil.returns_key(name)]
|
|
)
|
|
old_baseline_values[name] = ModelUtils.list_to_tensor(
|
|
batch[RewardSignalUtil.baseline_estimates_key(name)]
|
|
)
|
|
|
|
n_obs = len(self.policy.behavior_spec.observation_specs)
|
|
current_obs = ObsUtil.from_buffer(batch, n_obs)
|
|
# Convert to tensors
|
|
current_obs = [ModelUtils.list_to_tensor(obs) for obs in current_obs]
|
|
groupmate_obs = GroupObsUtil.from_buffer(batch, n_obs)
|
|
groupmate_obs = [
|
|
[ModelUtils.list_to_tensor(obs) for obs in _groupmate_obs]
|
|
for _groupmate_obs in groupmate_obs
|
|
]
|
|
|
|
act_masks = ModelUtils.list_to_tensor(batch[BufferKey.ACTION_MASK])
|
|
actions = AgentAction.from_buffer(batch)
|
|
groupmate_actions = AgentAction.group_from_buffer(batch)
|
|
|
|
memories = [
|
|
ModelUtils.list_to_tensor(batch[BufferKey.MEMORY][i])
|
|
for i in range(0, len(batch[BufferKey.MEMORY]), self.policy.sequence_length)
|
|
]
|
|
if len(memories) > 0:
|
|
memories = torch.stack(memories).unsqueeze(0)
|
|
value_memories = [
|
|
ModelUtils.list_to_tensor(batch[BufferKey.CRITIC_MEMORY][i])
|
|
for i in range(
|
|
0, len(batch[BufferKey.CRITIC_MEMORY]), self.policy.sequence_length
|
|
)
|
|
]
|
|
|
|
baseline_memories = [
|
|
ModelUtils.list_to_tensor(batch[BufferKey.BASELINE_MEMORY][i])
|
|
for i in range(
|
|
0, len(batch[BufferKey.BASELINE_MEMORY]), self.policy.sequence_length
|
|
)
|
|
]
|
|
|
|
if len(value_memories) > 0:
|
|
value_memories = torch.stack(value_memories).unsqueeze(0)
|
|
baseline_memories = torch.stack(baseline_memories).unsqueeze(0)
|
|
|
|
log_probs, entropy = self.policy.evaluate_actions(
|
|
current_obs,
|
|
masks=act_masks,
|
|
actions=actions,
|
|
memories=memories,
|
|
seq_len=self.policy.sequence_length,
|
|
)
|
|
all_obs = [current_obs] + groupmate_obs
|
|
values, _ = self.critic.critic_pass(
|
|
all_obs,
|
|
memories=value_memories,
|
|
sequence_length=self.policy.sequence_length,
|
|
)
|
|
groupmate_obs_and_actions = (groupmate_obs, groupmate_actions)
|
|
baselines, _ = self.critic.baseline(
|
|
current_obs,
|
|
groupmate_obs_and_actions,
|
|
memories=baseline_memories,
|
|
sequence_length=self.policy.sequence_length,
|
|
)
|
|
old_log_probs = ActionLogProbs.from_buffer(batch).flatten()
|
|
log_probs = log_probs.flatten()
|
|
loss_masks = ModelUtils.list_to_tensor(batch[BufferKey.MASKS], dtype=torch.bool)
|
|
|
|
baseline_loss = ModelUtils.trust_region_value_loss(
|
|
baselines, old_baseline_values, returns, decay_eps, loss_masks
|
|
)
|
|
value_loss = ModelUtils.trust_region_value_loss(
|
|
values, old_values, returns, decay_eps, loss_masks
|
|
)
|
|
policy_loss = ModelUtils.trust_region_policy_loss(
|
|
ModelUtils.list_to_tensor(batch[BufferKey.ADVANTAGES]),
|
|
log_probs,
|
|
old_log_probs,
|
|
loss_masks,
|
|
decay_eps,
|
|
)
|
|
loss = (
|
|
policy_loss
|
|
+ 0.5 * (value_loss + 0.5 * baseline_loss)
|
|
- decay_bet * ModelUtils.masked_mean(entropy, loss_masks)
|
|
)
|
|
|
|
# Set optimizer learning rate
|
|
ModelUtils.update_learning_rate(self.optimizer, decay_lr)
|
|
self.optimizer.zero_grad()
|
|
loss.backward()
|
|
|
|
self.optimizer.step()
|
|
update_stats = {
|
|
# NOTE: abs() is not technically correct, but matches the behavior in TensorFlow.
|
|
# TODO: After PyTorch is default, change to something more correct.
|
|
"Losses/Policy Loss": torch.abs(policy_loss).item(),
|
|
"Losses/Value Loss": value_loss.item(),
|
|
"Losses/Baseline Loss": baseline_loss.item(),
|
|
"Policy/Learning Rate": decay_lr,
|
|
"Policy/Epsilon": decay_eps,
|
|
"Policy/Beta": decay_bet,
|
|
}
|
|
|
|
for reward_provider in self.reward_signals.values():
|
|
update_stats.update(reward_provider.update(batch))
|
|
|
|
return update_stats
|
|
|
|
def get_modules(self):
|
|
modules = {"Optimizer:adam": self.optimizer, "Optimizer:critic": self._critic}
|
|
for reward_provider in self.reward_signals.values():
|
|
modules.update(reward_provider.get_modules())
|
|
return modules
|
|
|
|
def _evaluate_by_sequence_team(
|
|
self,
|
|
self_obs: List[torch.Tensor],
|
|
obs: List[List[torch.Tensor]],
|
|
actions: List[AgentAction],
|
|
init_value_mem: torch.Tensor,
|
|
init_baseline_mem: torch.Tensor,
|
|
) -> Tuple[
|
|
Dict[str, torch.Tensor],
|
|
Dict[str, torch.Tensor],
|
|
AgentBufferField,
|
|
AgentBufferField,
|
|
torch.Tensor,
|
|
torch.Tensor,
|
|
]:
|
|
"""
|
|
Evaluate a trajectory sequence-by-sequence, assembling the result. This enables us to get the
|
|
intermediate memories for the critic.
|
|
:param tensor_obs: A List of tensors of shape (trajectory_len, <obs_dim>) that are the agent's
|
|
observations for this trajectory.
|
|
:param initial_memory: The memory that preceeds this trajectory. Of shape (1,1,<mem_size>), i.e.
|
|
what is returned as the output of a MemoryModules.
|
|
:return: A Tuple of the value estimates as a Dict of [name, tensor], an AgentBufferField of the initial
|
|
memories to be used during value function update, and the final memory at the end of the trajectory.
|
|
"""
|
|
num_experiences = self_obs[0].shape[0]
|
|
all_next_value_mem = AgentBufferField()
|
|
all_next_baseline_mem = AgentBufferField()
|
|
|
|
# When using LSTM, we need to divide the trajectory into sequences of equal length. Sometimes,
|
|
# that division isn't even, and we must pad the leftover sequence.
|
|
# In the buffer, the last sequence are the ones that are padded. So if seq_len = 3 and
|
|
# trajectory is of length 10, the last sequence is [obs,pad,pad].
|
|
# Compute the number of elements in this padded seq.
|
|
leftover_seq_len = num_experiences % self.policy.sequence_length
|
|
|
|
all_values: Dict[str, List[np.ndarray]] = defaultdict(list)
|
|
all_baseline: Dict[str, List[np.ndarray]] = defaultdict(list)
|
|
_baseline_mem = init_baseline_mem
|
|
_value_mem = init_value_mem
|
|
|
|
# Evaluate other trajectories, carrying over _mem after each
|
|
# trajectory
|
|
for seq_num in range(num_experiences // self.policy.sequence_length):
|
|
for _ in range(self.policy.sequence_length):
|
|
all_next_value_mem.append(ModelUtils.to_numpy(_value_mem.squeeze()))
|
|
all_next_baseline_mem.append(
|
|
ModelUtils.to_numpy(_baseline_mem.squeeze())
|
|
)
|
|
|
|
start = seq_num * self.policy.sequence_length
|
|
end = (seq_num + 1) * self.policy.sequence_length
|
|
|
|
self_seq_obs = []
|
|
groupmate_seq_obs = []
|
|
groupmate_seq_act = []
|
|
seq_obs = []
|
|
for _self_obs in self_obs:
|
|
seq_obs.append(_self_obs[start:end])
|
|
self_seq_obs.append(seq_obs)
|
|
|
|
for groupmate_obs, groupmate_action in zip(obs, actions):
|
|
seq_obs = []
|
|
for _obs in groupmate_obs:
|
|
sliced_seq_obs = _obs[start:end]
|
|
seq_obs.append(sliced_seq_obs)
|
|
groupmate_seq_obs.append(seq_obs)
|
|
_act = groupmate_action.slice(start, end)
|
|
groupmate_seq_act.append(_act)
|
|
|
|
all_seq_obs = self_seq_obs + groupmate_seq_obs
|
|
values, _value_mem = self.critic.critic_pass(
|
|
all_seq_obs, _value_mem, sequence_length=self.policy.sequence_length
|
|
)
|
|
for signal_name, _val in values.items():
|
|
all_values[signal_name].append(_val)
|
|
|
|
groupmate_obs_and_actions = (groupmate_seq_obs, groupmate_seq_act)
|
|
baselines, _baseline_mem = self.critic.baseline(
|
|
self_seq_obs[0],
|
|
groupmate_obs_and_actions,
|
|
_baseline_mem,
|
|
sequence_length=self.policy.sequence_length,
|
|
)
|
|
for signal_name, _val in baselines.items():
|
|
all_baseline[signal_name].append(_val)
|
|
|
|
# Compute values for the potentially truncated initial sequence
|
|
if leftover_seq_len > 0:
|
|
self_seq_obs = []
|
|
groupmate_seq_obs = []
|
|
groupmate_seq_act = []
|
|
seq_obs = []
|
|
for _self_obs in self_obs:
|
|
last_seq_obs = _self_obs[-leftover_seq_len:]
|
|
seq_obs.append(last_seq_obs)
|
|
self_seq_obs.append(seq_obs)
|
|
|
|
for groupmate_obs, groupmate_action in zip(obs, actions):
|
|
seq_obs = []
|
|
for _obs in groupmate_obs:
|
|
last_seq_obs = _obs[-leftover_seq_len:]
|
|
seq_obs.append(last_seq_obs)
|
|
groupmate_seq_obs.append(seq_obs)
|
|
_act = groupmate_action.slice(len(_obs) - leftover_seq_len, len(_obs))
|
|
groupmate_seq_act.append(_act)
|
|
|
|
# For the last sequence, the initial memory should be the one at the
|
|
# beginning of this trajectory.
|
|
seq_obs = []
|
|
for _ in range(leftover_seq_len):
|
|
all_next_value_mem.append(ModelUtils.to_numpy(_value_mem.squeeze()))
|
|
all_next_baseline_mem.append(
|
|
ModelUtils.to_numpy(_baseline_mem.squeeze())
|
|
)
|
|
|
|
all_seq_obs = self_seq_obs + groupmate_seq_obs
|
|
last_values, _value_mem = self.critic.critic_pass(
|
|
all_seq_obs, _value_mem, sequence_length=leftover_seq_len
|
|
)
|
|
for signal_name, _val in last_values.items():
|
|
all_values[signal_name].append(_val)
|
|
groupmate_obs_and_actions = (groupmate_seq_obs, groupmate_seq_act)
|
|
last_baseline, _baseline_mem = self.critic.baseline(
|
|
self_seq_obs[0],
|
|
groupmate_obs_and_actions,
|
|
_baseline_mem,
|
|
sequence_length=leftover_seq_len,
|
|
)
|
|
for signal_name, _val in last_baseline.items():
|
|
all_baseline[signal_name].append(_val)
|
|
# Create one tensor per reward signal
|
|
all_value_tensors = {
|
|
signal_name: torch.cat(value_list, dim=0)
|
|
for signal_name, value_list in all_values.items()
|
|
}
|
|
all_baseline_tensors = {
|
|
signal_name: torch.cat(baseline_list, dim=0)
|
|
for signal_name, baseline_list in all_baseline.items()
|
|
}
|
|
next_value_mem = _value_mem
|
|
next_baseline_mem = _baseline_mem
|
|
return (
|
|
all_value_tensors,
|
|
all_baseline_tensors,
|
|
all_next_value_mem,
|
|
all_next_baseline_mem,
|
|
next_value_mem,
|
|
next_baseline_mem,
|
|
)
|
|
|
|
def get_trajectory_value_estimates(
|
|
self,
|
|
batch: AgentBuffer,
|
|
next_obs: List[np.ndarray],
|
|
done: bool,
|
|
agent_id: str = "",
|
|
) -> Tuple[Dict[str, np.ndarray], Dict[str, float], Optional[AgentBufferField]]:
|
|
"""
|
|
Override base class method. Unused in the trainer, but needed to make sure class heirarchy is maintained.
|
|
Assume that there are no group obs.
|
|
"""
|
|
(
|
|
value_estimates,
|
|
_,
|
|
next_value_estimates,
|
|
all_next_value_mem,
|
|
_,
|
|
) = self.get_trajectory_and_baseline_value_estimates(
|
|
batch, next_obs, [], done, agent_id
|
|
)
|
|
|
|
return value_estimates, next_value_estimates, all_next_value_mem
|
|
|
|
def get_trajectory_and_baseline_value_estimates(
|
|
self,
|
|
batch: AgentBuffer,
|
|
next_obs: List[np.ndarray],
|
|
next_groupmate_obs: List[List[np.ndarray]],
|
|
done: bool,
|
|
agent_id: str = "",
|
|
) -> Tuple[
|
|
Dict[str, np.ndarray],
|
|
Dict[str, np.ndarray],
|
|
Dict[str, float],
|
|
Optional[AgentBufferField],
|
|
Optional[AgentBufferField],
|
|
]:
|
|
"""
|
|
Get value estimates, baseline estimates, and memories for a trajectory, in batch form.
|
|
:param batch: An AgentBuffer that consists of a trajectory.
|
|
:param next_obs: the next observation (after the trajectory). Used for boostrapping
|
|
if this is not a termiinal trajectory.
|
|
:param next_groupmate_obs: the next observations from other members of the group.
|
|
:param done: Set true if this is a terminal trajectory.
|
|
:param agent_id: Agent ID of the agent that this trajectory belongs to.
|
|
:returns: A Tuple of the Value Estimates as a Dict of [name, np.ndarray(trajectory_len)],
|
|
the baseline estimates as a Dict, the final value estimate as a Dict of [name, float], and
|
|
optionally (if using memories) an AgentBufferField of initial critic and baseline memories to be used
|
|
during update.
|
|
"""
|
|
|
|
n_obs = len(self.policy.behavior_spec.observation_specs)
|
|
|
|
current_obs = ObsUtil.from_buffer(batch, n_obs)
|
|
groupmate_obs = GroupObsUtil.from_buffer(batch, n_obs)
|
|
|
|
current_obs = [ModelUtils.list_to_tensor(obs) for obs in current_obs]
|
|
groupmate_obs = [
|
|
[ModelUtils.list_to_tensor(obs) for obs in _groupmate_obs]
|
|
for _groupmate_obs in groupmate_obs
|
|
]
|
|
|
|
groupmate_actions = AgentAction.group_from_buffer(batch)
|
|
|
|
next_obs = [ModelUtils.list_to_tensor(obs) for obs in next_obs]
|
|
next_obs = [obs.unsqueeze(0) for obs in next_obs]
|
|
|
|
next_groupmate_obs = [
|
|
ModelUtils.list_to_tensor_list(_list_obs)
|
|
for _list_obs in next_groupmate_obs
|
|
]
|
|
# Expand dimensions of next critic obs
|
|
next_groupmate_obs = [
|
|
[_obs.unsqueeze(0) for _obs in _list_obs]
|
|
for _list_obs in next_groupmate_obs
|
|
]
|
|
|
|
if agent_id in self.value_memory_dict:
|
|
# The agent_id should always be in both since they are added together
|
|
_init_value_mem = self.value_memory_dict[agent_id]
|
|
_init_baseline_mem = self.baseline_memory_dict[agent_id]
|
|
else:
|
|
_init_value_mem = (
|
|
torch.zeros((1, 1, self.critic.memory_size))
|
|
if self.policy.use_recurrent
|
|
else None
|
|
)
|
|
_init_baseline_mem = (
|
|
torch.zeros((1, 1, self.critic.memory_size))
|
|
if self.policy.use_recurrent
|
|
else None
|
|
)
|
|
|
|
all_obs = (
|
|
[current_obs] + groupmate_obs
|
|
if groupmate_obs is not None
|
|
else [current_obs]
|
|
)
|
|
all_next_value_mem: Optional[AgentBufferField] = None
|
|
all_next_baseline_mem: Optional[AgentBufferField] = None
|
|
with torch.no_grad():
|
|
if self.policy.use_recurrent:
|
|
(
|
|
value_estimates,
|
|
baseline_estimates,
|
|
all_next_value_mem,
|
|
all_next_baseline_mem,
|
|
next_value_mem,
|
|
next_baseline_mem,
|
|
) = self._evaluate_by_sequence_team(
|
|
current_obs,
|
|
groupmate_obs,
|
|
groupmate_actions,
|
|
_init_value_mem,
|
|
_init_baseline_mem,
|
|
)
|
|
else:
|
|
value_estimates, next_value_mem = self.critic.critic_pass(
|
|
all_obs, _init_value_mem, sequence_length=batch.num_experiences
|
|
)
|
|
groupmate_obs_and_actions = (groupmate_obs, groupmate_actions)
|
|
baseline_estimates, next_baseline_mem = self.critic.baseline(
|
|
current_obs,
|
|
groupmate_obs_and_actions,
|
|
_init_baseline_mem,
|
|
sequence_length=batch.num_experiences,
|
|
)
|
|
# Store the memory for the next trajectory
|
|
self.value_memory_dict[agent_id] = next_value_mem
|
|
self.baseline_memory_dict[agent_id] = next_baseline_mem
|
|
|
|
all_next_obs = (
|
|
[next_obs] + next_groupmate_obs
|
|
if next_groupmate_obs is not None
|
|
else [next_obs]
|
|
)
|
|
|
|
next_value_estimates, _ = self.critic.critic_pass(
|
|
all_next_obs, next_value_mem, sequence_length=1
|
|
)
|
|
|
|
for name, estimate in baseline_estimates.items():
|
|
baseline_estimates[name] = ModelUtils.to_numpy(estimate)
|
|
|
|
for name, estimate in value_estimates.items():
|
|
value_estimates[name] = ModelUtils.to_numpy(estimate)
|
|
|
|
# the base line and V shpuld not be on the same done flag
|
|
for name, estimate in next_value_estimates.items():
|
|
next_value_estimates[name] = ModelUtils.to_numpy(estimate)
|
|
|
|
if done:
|
|
for k in next_value_estimates:
|
|
if not self.reward_signals[k].ignore_done:
|
|
next_value_estimates[k][-1] = 0.0
|
|
|
|
return (
|
|
value_estimates,
|
|
baseline_estimates,
|
|
next_value_estimates,
|
|
all_next_value_mem,
|
|
all_next_baseline_mem,
|
|
)
|