您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
234 行
8.0 KiB
234 行
8.0 KiB
import math
|
|
import tempfile
|
|
import pytest
|
|
import numpy as np
|
|
import attr
|
|
from typing import Dict
|
|
|
|
from mlagents.trainers.tests.transfer_test_envs import SimpleTransferEnvironment
|
|
from mlagents.trainers.trainer_controller import TrainerController
|
|
from mlagents.trainers.trainer_util import TrainerFactory
|
|
from mlagents.trainers.simple_env_manager import SimpleEnvManager
|
|
from mlagents.trainers.demo_loader import write_demo
|
|
from mlagents.trainers.stats import StatsReporter, StatsWriter, StatsSummary, TensorboardWriter, CSVWriter
|
|
from mlagents.trainers.settings import (
|
|
TrainerSettings,
|
|
PPOSettings,
|
|
PPOTransferSettings,
|
|
SACSettings,
|
|
NetworkSettings,
|
|
SelfPlaySettings,
|
|
BehavioralCloningSettings,
|
|
GAILSettings,
|
|
TrainerType,
|
|
RewardSignalType,
|
|
)
|
|
from mlagents.trainers.models import EncoderType, ScheduleType
|
|
from mlagents_envs.side_channel.environment_parameters_channel import (
|
|
EnvironmentParametersChannel,
|
|
)
|
|
from mlagents_envs.communicator_objects.demonstration_meta_pb2 import (
|
|
DemonstrationMetaProto,
|
|
)
|
|
from mlagents_envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
|
|
from mlagents_envs.communicator_objects.space_type_pb2 import discrete, continuous
|
|
|
|
BRAIN_NAME = "Simple"
|
|
|
|
|
|
PPO_CONFIG = TrainerSettings(
|
|
trainer_type=TrainerType.PPO,
|
|
hyperparameters=PPOSettings(
|
|
learning_rate=5.0e-3,
|
|
learning_rate_schedule=ScheduleType.CONSTANT,
|
|
batch_size=16,
|
|
buffer_size=64,
|
|
),
|
|
network_settings=NetworkSettings(num_layers=2, hidden_units=32),
|
|
summary_freq=500,
|
|
max_steps=3000,
|
|
threaded=False,
|
|
)
|
|
|
|
SAC_CONFIG = TrainerSettings(
|
|
trainer_type=TrainerType.SAC,
|
|
hyperparameters=SACSettings(
|
|
learning_rate=5.0e-3,
|
|
learning_rate_schedule=ScheduleType.CONSTANT,
|
|
batch_size=8,
|
|
buffer_init_steps=100,
|
|
buffer_size=5000,
|
|
tau=0.01,
|
|
init_entcoef=0.01,
|
|
),
|
|
network_settings=NetworkSettings(num_layers=1, hidden_units=16),
|
|
summary_freq=100,
|
|
max_steps=1000,
|
|
threaded=False,
|
|
)
|
|
|
|
Transfer_CONFIG = TrainerSettings(
|
|
trainer_type=TrainerType.PPO_Transfer,
|
|
hyperparameters=PPOTransferSettings(
|
|
learning_rate=5.0e-3,
|
|
learning_rate_schedule=ScheduleType.CONSTANT,
|
|
batch_size=16,
|
|
buffer_size=64,
|
|
feature_size=4,
|
|
reuse_encoder=True,
|
|
in_epoch_alter=True,
|
|
# in_batch_alter=True,
|
|
use_op_buffer=True,
|
|
# policy_layers=0,
|
|
# value_layers=0,
|
|
# conv_thres=1e-4,
|
|
# predict_return=True
|
|
# separate_policy_train=True,
|
|
# separate_value_train=True
|
|
# separate_value_net=True,
|
|
),
|
|
network_settings=NetworkSettings(num_layers=1, hidden_units=32),
|
|
summary_freq=500,
|
|
max_steps=3000,
|
|
threaded=False,
|
|
)
|
|
|
|
|
|
|
|
# The reward processor is passed as an argument to _check_environment_trains.
|
|
# It is applied to the list pf all final rewards for each brain individually.
|
|
# This is so that we can process all final rewards in different ways for different algorithms.
|
|
# Custom reward processors shuld be built within the test function and passed to _check_environment_trains
|
|
# Default is average over the last 5 final rewards
|
|
def default_reward_processor(rewards, last_n_rewards=5):
|
|
rewards_to_use = rewards[-last_n_rewards:]
|
|
# For debugging tests
|
|
print("Last {} rewards:".format(last_n_rewards), rewards_to_use)
|
|
return np.array(rewards[-last_n_rewards:], dtype=np.float32).mean()
|
|
|
|
|
|
class DebugWriter(StatsWriter):
|
|
"""
|
|
Print to stdout so stats can be viewed in pytest
|
|
"""
|
|
|
|
def __init__(self):
|
|
self._last_reward_summary: Dict[str, float] = {}
|
|
self.stats = {}
|
|
|
|
def get_last_rewards(self):
|
|
return self._last_reward_summary
|
|
|
|
def write_stats(
|
|
self, category: str, values: Dict[str, StatsSummary], step: int
|
|
) -> None:
|
|
for val, stats_summary in values.items():
|
|
if val == "Environment/Cumulative Reward":
|
|
print(step, val, stats_summary.mean)
|
|
self.stats[step] = stats_summary.mean
|
|
self._last_reward_summary[category] = stats_summary.mean
|
|
|
|
def write2file(self, filename):
|
|
with open(filename, "w") as reward_file:
|
|
for step in self.stats.keys():
|
|
reward_file.write(str(step) + ":" + str(self.stats[step]) + "\n")
|
|
|
|
|
|
def _check_environment_trains(
|
|
env,
|
|
trainer_config,
|
|
reward_processor=default_reward_processor,
|
|
meta_curriculum=None,
|
|
success_threshold=0.9,
|
|
env_manager=None,
|
|
run_id="id",
|
|
seed=1337
|
|
):
|
|
# Create controller and begin training.
|
|
model_dir = "./transfer_results/" + run_id
|
|
StatsReporter.writers.clear() # Clear StatsReporters so we don't write to file
|
|
debug_writer = DebugWriter()
|
|
StatsReporter.add_writer(debug_writer)
|
|
|
|
csv_writer = CSVWriter(
|
|
model_dir,
|
|
required_fields=[
|
|
"Environment/Cumulative Reward",
|
|
"Environment/Episode Length",
|
|
],
|
|
)
|
|
tb_writer = TensorboardWriter(
|
|
model_dir, clear_past_data=True
|
|
)
|
|
StatsReporter.add_writer(tb_writer)
|
|
StatsReporter.add_writer(csv_writer)
|
|
|
|
if env_manager is None:
|
|
env_manager = SimpleEnvManager(env, EnvironmentParametersChannel())
|
|
trainer_factory = TrainerFactory(
|
|
trainer_config=trainer_config,
|
|
output_path=model_dir,
|
|
train_model=True,
|
|
load_model=False,
|
|
seed=seed,
|
|
meta_curriculum=meta_curriculum,
|
|
multi_gpu=False,
|
|
)
|
|
|
|
tc = TrainerController(
|
|
trainer_factory=trainer_factory,
|
|
output_path=model_dir,
|
|
run_id=run_id,
|
|
meta_curriculum=meta_curriculum,
|
|
train=True,
|
|
training_seed=seed,
|
|
)
|
|
|
|
# Begin training
|
|
tc.start_learning(env_manager)
|
|
# debug_writer.write2file(model_dir+"/reward.txt")
|
|
|
|
# if (
|
|
# success_threshold is not None
|
|
# ): # For tests where we are just checking setup and not reward
|
|
# processed_rewards = [
|
|
# reward_processor(rewards) for rewards in env.final_rewards.values()
|
|
# ]
|
|
# assert all(not math.isnan(reward) for reward in processed_rewards)
|
|
# assert all(reward > success_threshold for reward in processed_rewards)
|
|
|
|
|
|
def test_2d_model(config=Transfer_CONFIG, obs_spec_type="normal", run_id="model_normal_f4_varp-pri-test", seed=0):
|
|
env = SimpleTransferEnvironment(
|
|
[BRAIN_NAME], use_discrete=False, action_size=2, step_size=0.1,
|
|
num_vector=2, obs_spec_type=obs_spec_type, goal_type="hard"
|
|
)
|
|
new_hyperparams = attr.evolve(
|
|
config.hyperparameters, batch_size=120, buffer_size=12000, learning_rate=5.0e-3,
|
|
use_var_predict=True, with_prior=True
|
|
)
|
|
config = attr.evolve(config, hyperparameters=new_hyperparams, max_steps=200000, summary_freq=5000)
|
|
_check_environment_trains(env, {BRAIN_NAME: config}, run_id=run_id + "_s" + str(seed), seed=seed)
|
|
|
|
def test_2d_transfer(config=Transfer_CONFIG, obs_spec_type="rich1", run_id="transfer_rich1_from-normal_varp-pri_retrain-all_5e-2", seed=1337):
|
|
env = SimpleTransferEnvironment(
|
|
[BRAIN_NAME], use_discrete=False, action_size=2, step_size=0.1,
|
|
num_vector=2, obs_spec_type=obs_spec_type, goal_type="hard"
|
|
)
|
|
new_hyperparams = attr.evolve(
|
|
config.hyperparameters, batch_size=120, buffer_size=12000, use_transfer=True,
|
|
transfer_path="./transfer_results/model_normal_f4_varp-pri_s0/Simple",
|
|
use_op_buffer=True, in_epoch_alter=True, in_batch_alter=False, learning_rate=5.0e-2,
|
|
train_policy=True, train_value=True, train_model=True, feature_size=4, learning_rate_schedule=ScheduleType.LINEAR,
|
|
use_var_predict=True, with_prior=True
|
|
)
|
|
config = attr.evolve(config, hyperparameters=new_hyperparams, max_steps=200000, summary_freq=5000)
|
|
_check_environment_trains(env, {BRAIN_NAME: config}, run_id=run_id + "_s" + str(seed), seed=seed)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# test_2d_model(seed=0)
|
|
# test_2d_model(config=PPO_CONFIG, run_id="ppo_normal", seed=0)
|
|
test_2d_transfer(seed=123)
|
|
# for i in range(5):
|
|
# test_2d_model(seed=i)
|