您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
338 行
14 KiB
338 行
14 KiB
# # Unity ML-Agents Toolkit
|
|
# ## ML-Agent Learning (SAC)
|
|
# Contains an implementation of SAC as described in https://arxiv.org/abs/1801.01290
|
|
# and implemented in https://github.com/hill-a/stable-baselines
|
|
|
|
import logging
|
|
from collections import defaultdict
|
|
from typing import Dict
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
from mlagents.trainers.brain import BrainInfo
|
|
from mlagents.trainers.action_info import ActionInfoOutputs
|
|
from mlagents.envs.timers import timed
|
|
from mlagents.trainers.sac.policy import SACPolicy
|
|
from mlagents.trainers.rl_trainer import RLTrainer, AllRewardsOutput
|
|
|
|
|
|
LOGGER = logging.getLogger("mlagents.trainers")
|
|
BUFFER_TRUNCATE_PERCENT = 0.8
|
|
|
|
|
|
class SACTrainer(RLTrainer):
|
|
"""
|
|
The SACTrainer is an implementation of the SAC algorithm, with support
|
|
for discrete actions and recurrent networks.
|
|
"""
|
|
|
|
def __init__(
|
|
self, brain, reward_buff_cap, trainer_parameters, training, load, seed, run_id
|
|
):
|
|
"""
|
|
Responsible for collecting experiences and training SAC model.
|
|
:param trainer_parameters: The parameters for the trainer (dictionary).
|
|
:param training: Whether the trainer is set for training.
|
|
:param load: Whether the model should be loaded.
|
|
:param seed: The seed the model will be initialized with
|
|
:param run_id: The The identifier of the current run
|
|
"""
|
|
super().__init__(brain, trainer_parameters, training, run_id, reward_buff_cap)
|
|
self.param_keys = [
|
|
"batch_size",
|
|
"buffer_size",
|
|
"buffer_init_steps",
|
|
"hidden_units",
|
|
"learning_rate",
|
|
"init_entcoef",
|
|
"max_steps",
|
|
"normalize",
|
|
"num_update",
|
|
"num_layers",
|
|
"time_horizon",
|
|
"sequence_length",
|
|
"summary_freq",
|
|
"tau",
|
|
"use_recurrent",
|
|
"summary_path",
|
|
"memory_size",
|
|
"model_path",
|
|
"reward_signals",
|
|
"vis_encode_type",
|
|
]
|
|
|
|
self.check_param_keys()
|
|
|
|
self.step = 0
|
|
self.train_interval = (
|
|
trainer_parameters["train_interval"]
|
|
if "train_interval" in trainer_parameters
|
|
else 1
|
|
)
|
|
self.reward_signal_updates_per_train = (
|
|
trainer_parameters["reward_signals"]["reward_signal_num_update"]
|
|
if "reward_signal_num_update" in trainer_parameters["reward_signals"]
|
|
else trainer_parameters["num_update"]
|
|
)
|
|
|
|
self.checkpoint_replay_buffer = (
|
|
trainer_parameters["save_replay_buffer"]
|
|
if "save_replay_buffer" in trainer_parameters
|
|
else False
|
|
)
|
|
self.sac_policy = SACPolicy(
|
|
seed, brain, trainer_parameters, self.is_training, load
|
|
)
|
|
self.policy = self.sac_policy
|
|
|
|
# Load the replay buffer if load
|
|
if load and self.checkpoint_replay_buffer:
|
|
try:
|
|
self.load_replay_buffer()
|
|
except (AttributeError, FileNotFoundError):
|
|
LOGGER.warning(
|
|
"Replay buffer was unable to load, starting from scratch."
|
|
)
|
|
LOGGER.debug(
|
|
"Loaded update buffer with {} sequences".format(
|
|
self.update_buffer.num_experiences
|
|
)
|
|
)
|
|
|
|
for _reward_signal in self.policy.reward_signals.keys():
|
|
self.collected_rewards[_reward_signal] = {}
|
|
|
|
self.episode_steps = {}
|
|
|
|
def save_model(self) -> None:
|
|
"""
|
|
Saves the model. Overrides the default save_model since we want to save
|
|
the replay buffer as well.
|
|
"""
|
|
self.policy.save_model(self.get_step)
|
|
if self.checkpoint_replay_buffer:
|
|
self.save_replay_buffer()
|
|
|
|
def save_replay_buffer(self) -> None:
|
|
"""
|
|
Save the training buffer's update buffer to a pickle file.
|
|
"""
|
|
filename = os.path.join(self.policy.model_path, "last_replay_buffer.hdf5")
|
|
LOGGER.info("Saving Experience Replay Buffer to {}".format(filename))
|
|
with open(filename, "wb") as file_object:
|
|
self.update_buffer.save_to_file(file_object)
|
|
|
|
def load_replay_buffer(self) -> None:
|
|
"""
|
|
Loads the last saved replay buffer from a file.
|
|
"""
|
|
filename = os.path.join(self.policy.model_path, "last_replay_buffer.hdf5")
|
|
LOGGER.info("Loading Experience Replay Buffer from {}".format(filename))
|
|
with open(filename, "rb+") as file_object:
|
|
self.update_buffer.load_from_file(file_object)
|
|
LOGGER.info(
|
|
"Experience replay buffer has {} experiences.".format(
|
|
self.update_buffer.num_experiences
|
|
)
|
|
)
|
|
|
|
def add_policy_outputs(
|
|
self, take_action_outputs: ActionInfoOutputs, agent_id: str, agent_idx: int
|
|
) -> None:
|
|
"""
|
|
Takes the output of the last action and store it into the training buffer.
|
|
"""
|
|
actions = take_action_outputs["action"]
|
|
self.processing_buffer[agent_id]["actions"].append(actions[agent_idx])
|
|
|
|
def add_rewards_outputs(
|
|
self,
|
|
rewards_out: AllRewardsOutput,
|
|
values: Dict[str, np.ndarray],
|
|
agent_id: str,
|
|
agent_idx: int,
|
|
agent_next_idx: int,
|
|
) -> None:
|
|
"""
|
|
Takes the value output of the last action and store it into the training buffer.
|
|
"""
|
|
self.processing_buffer[agent_id]["environment_rewards"].append(
|
|
rewards_out.environment[agent_next_idx]
|
|
)
|
|
|
|
def process_experiences(
|
|
self, current_info: BrainInfo, next_info: BrainInfo
|
|
) -> None:
|
|
"""
|
|
Checks agent histories for processing condition, and processes them as necessary.
|
|
:param current_info: current BrainInfo.
|
|
:param next_info: next BrainInfo.
|
|
"""
|
|
if self.is_training:
|
|
self.policy.update_normalization(next_info.vector_observations)
|
|
for l in range(len(next_info.agents)):
|
|
agent_actions = self.processing_buffer[next_info.agents[l]]["actions"]
|
|
if (
|
|
next_info.local_done[l]
|
|
or len(agent_actions) >= self.trainer_parameters["time_horizon"]
|
|
) and len(agent_actions) > 0:
|
|
agent_id = next_info.agents[l]
|
|
|
|
# Bootstrap using last brain info. Set last element to duplicate obs and remove dones.
|
|
if next_info.max_reached[l]:
|
|
bootstrapping_info = self.processing_buffer[
|
|
agent_id
|
|
].last_brain_info
|
|
idx = bootstrapping_info.agents.index(agent_id)
|
|
for i, obs in enumerate(bootstrapping_info.visual_observations):
|
|
self.processing_buffer[agent_id]["next_visual_obs%d" % i][
|
|
-1
|
|
] = obs[idx]
|
|
if self.policy.use_vec_obs:
|
|
self.processing_buffer[agent_id]["next_vector_in"][
|
|
-1
|
|
] = bootstrapping_info.vector_observations[idx]
|
|
self.processing_buffer[agent_id]["done"][-1] = False
|
|
|
|
self.processing_buffer.append_to_update_buffer(
|
|
self.update_buffer,
|
|
agent_id,
|
|
batch_size=None,
|
|
training_length=self.policy.sequence_length,
|
|
)
|
|
|
|
self.processing_buffer[agent_id].reset_agent()
|
|
if next_info.local_done[l]:
|
|
self.stats["Environment/Episode Length"].append(
|
|
self.episode_steps.get(agent_id, 0)
|
|
)
|
|
self.episode_steps[agent_id] = 0
|
|
for name, rewards in self.collected_rewards.items():
|
|
if name == "environment":
|
|
self.cumulative_returns_since_policy_update.append(
|
|
rewards.get(agent_id, 0)
|
|
)
|
|
self.stats["Environment/Cumulative Reward"].append(
|
|
rewards.get(agent_id, 0)
|
|
)
|
|
self.reward_buffer.appendleft(rewards.get(agent_id, 0))
|
|
rewards[agent_id] = 0
|
|
else:
|
|
self.stats[
|
|
self.policy.reward_signals[name].stat_name
|
|
].append(rewards.get(agent_id, 0))
|
|
rewards[agent_id] = 0
|
|
|
|
def is_ready_update(self) -> bool:
|
|
"""
|
|
Returns whether or not the trainer has enough elements to run update model
|
|
:return: A boolean corresponding to whether or not update_model() can be run
|
|
"""
|
|
return (
|
|
self.update_buffer.num_experiences >= self.trainer_parameters["batch_size"]
|
|
and self.step >= self.trainer_parameters["buffer_init_steps"]
|
|
)
|
|
|
|
@timed
|
|
def update_policy(self) -> None:
|
|
"""
|
|
If train_interval is met, update the SAC policy given the current reward signals.
|
|
If reward_signal_train_interval is met, update the reward signals from the buffer.
|
|
"""
|
|
if self.step % self.train_interval == 0:
|
|
self.trainer_metrics.start_policy_update_timer(
|
|
number_experiences=self.update_buffer.num_experiences,
|
|
mean_return=float(np.mean(self.cumulative_returns_since_policy_update)),
|
|
)
|
|
self.update_sac_policy()
|
|
self.update_reward_signals()
|
|
self.trainer_metrics.end_policy_update()
|
|
|
|
def update_sac_policy(self) -> None:
|
|
"""
|
|
Uses demonstration_buffer to update the policy.
|
|
The reward signal generators are updated using different mini batches.
|
|
If we want to imitate http://arxiv.org/abs/1809.02925 and similar papers, where the policy is updated
|
|
N times, then the reward signals are updated N times, then reward_signal_updates_per_train
|
|
is greater than 1 and the reward signals are not updated in parallel.
|
|
"""
|
|
|
|
self.cumulative_returns_since_policy_update.clear()
|
|
n_sequences = max(
|
|
int(self.trainer_parameters["batch_size"] / self.policy.sequence_length), 1
|
|
)
|
|
|
|
num_updates = self.trainer_parameters["num_update"]
|
|
batch_update_stats: Dict[str, list] = defaultdict(list)
|
|
for _ in range(num_updates):
|
|
LOGGER.debug("Updating SAC policy at step {}".format(self.step))
|
|
buffer = self.update_buffer
|
|
if (
|
|
self.update_buffer.num_experiences
|
|
>= self.trainer_parameters["batch_size"]
|
|
):
|
|
sampled_minibatch = buffer.sample_mini_batch(
|
|
self.trainer_parameters["batch_size"],
|
|
sequence_length=self.policy.sequence_length,
|
|
)
|
|
# Get rewards for each reward
|
|
for name, signal in self.policy.reward_signals.items():
|
|
sampled_minibatch[
|
|
"{}_rewards".format(name)
|
|
] = signal.evaluate_batch(sampled_minibatch).scaled_reward
|
|
|
|
update_stats = self.policy.update(sampled_minibatch, n_sequences)
|
|
for stat_name, value in update_stats.items():
|
|
batch_update_stats[stat_name].append(value)
|
|
|
|
# Truncate update buffer if neccessary. Truncate more than we need to to avoid truncating
|
|
# a large buffer at each update.
|
|
if self.update_buffer.num_experiences > self.trainer_parameters["buffer_size"]:
|
|
self.update_buffer.truncate(
|
|
int(self.trainer_parameters["buffer_size"] * BUFFER_TRUNCATE_PERCENT)
|
|
)
|
|
|
|
for stat, stat_list in batch_update_stats.items():
|
|
self.stats[stat].append(np.mean(stat_list))
|
|
|
|
bc_module = self.sac_policy.bc_module
|
|
if bc_module:
|
|
update_stats = bc_module.update()
|
|
for stat, val in update_stats.items():
|
|
self.stats[stat].append(val)
|
|
|
|
def update_reward_signals(self) -> None:
|
|
"""
|
|
Iterate through the reward signals and update them. Unlike in PPO,
|
|
do it separate from the policy so that it can be done at a different
|
|
interval.
|
|
This function should only be used to simulate
|
|
http://arxiv.org/abs/1809.02925 and similar papers, where the policy is updated
|
|
N times, then the reward signals are updated N times. Normally, the reward signal
|
|
and policy are updated in parallel.
|
|
"""
|
|
buffer = self.update_buffer
|
|
num_updates = self.reward_signal_updates_per_train
|
|
n_sequences = max(
|
|
int(self.trainer_parameters["batch_size"] / self.policy.sequence_length), 1
|
|
)
|
|
batch_update_stats: Dict[str, list] = defaultdict(list)
|
|
for _ in range(num_updates):
|
|
# Get minibatches for reward signal update if needed
|
|
reward_signal_minibatches = {}
|
|
for name, signal in self.policy.reward_signals.items():
|
|
LOGGER.debug("Updating {} at step {}".format(name, self.step))
|
|
# Some signals don't need a minibatch to be sampled - so we don't!
|
|
if signal.update_dict:
|
|
reward_signal_minibatches[name] = buffer.sample_mini_batch(
|
|
self.trainer_parameters["batch_size"],
|
|
sequence_length=self.policy.sequence_length,
|
|
)
|
|
update_stats = self.sac_policy.update_reward_signals(
|
|
reward_signal_minibatches, n_sequences
|
|
)
|
|
for stat_name, value in update_stats.items():
|
|
batch_update_stats[stat_name].append(value)
|
|
for stat, stat_list in batch_update_stats.items():
|
|
self.stats[stat].append(np.mean(stat_list))
|