import os import torch from mlagents_envs.logging_util import get_logger from mlagents.trainers.settings import SerializationSettings logger = get_logger(__name__) class ModelSerializer: def __init__(self, policy): self.policy = policy batch_dim = [1] seq_len_dim = [1] dummy_vec_obs = [torch.zeros(batch_dim + [self.policy.vec_obs_size])] dummy_vis_obs = [ torch.zeros(batch_dim + [shape[2], shape[0], shape[1]]) for shape in self.policy.behavior_spec.observation_shapes if len(shape) == 3 ] dummy_masks = torch.ones(batch_dim + [sum(self.policy.actor_critic.act_size)]) dummy_memories = torch.zeros( batch_dim + seq_len_dim + [self.policy.export_memory_size] ) self.dummy_input = (dummy_vec_obs, dummy_vis_obs, dummy_masks, dummy_memories) self.input_names = ( ["vector_observation"] + [f"visual_observation_{i}" for i in range(self.policy.vis_obs_size)] + ["action_masks", "memories"] ) self.output_names = [ "action", "action_probs", "version_number", "memory_size", "is_continuous_control", "action_output_shape", ] self.dynamic_axes = {name: {0: "batch"} for name in self.input_names} self.dynamic_axes.update({"action": {0: "batch"}, "action_probs": {0: "batch"}}) def export_policy_model(self, output_filepath: str) -> None: """ Exports a Torch model for a Policy to .onnx format for Unity embedding. :param output_filepath: file path to output the model (without file suffix) :param brain_name: Brain name of brain to be trained """ if not os.path.exists(output_filepath): os.makedirs(output_filepath) onnx_output_path = f"{output_filepath}.onnx" logger.info(f"Converting to {onnx_output_path}") torch.onnx.export( self.policy.actor_critic, self.dummy_input, onnx_output_path, opset_version=SerializationSettings.onnx_opset, input_names=self.input_names, output_names=self.output_names, dynamic_axes=self.dynamic_axes, ) logger.info(f"Exported {onnx_output_path}")