# # Unity ML-Agents Toolkit # ## ML-Agent Learning (Behavioral Cloning) # Contains an implementation of Behavioral Cloning Algorithm import logging import copy from mlagents.trainers.bc.trainer import BCTrainer from mlagents.trainers.demo_loader import demo_to_buffer from mlagents.trainers.trainer import UnityTrainerException logger = logging.getLogger("mlagents.trainers") class OfflineBCTrainer(BCTrainer): """The OfflineBCTrainer is an implementation of Offline Behavioral Cloning.""" def __init__(self, brain, trainer_parameters, training, load, seed, run_id): """ Responsible for collecting experiences and training PPO model. :param trainer_parameters: The parameters for the trainer (dictionary). :param training: Whether the trainer is set for training. :param load: Whether the model should be loaded. :param seed: The seed the model will be initialized with :param run_id: The identifier of the current run """ super(OfflineBCTrainer, self).__init__( brain, trainer_parameters, training, load, seed, run_id ) self.param_keys = [ "batch_size", "summary_freq", "max_steps", "batches_per_epoch", "use_recurrent", "hidden_units", "learning_rate", "num_layers", "sequence_length", "memory_size", "model_path", "demo_path", ] self.check_param_keys() self.batches_per_epoch = trainer_parameters["batches_per_epoch"] self.n_sequences = max( int(trainer_parameters["batch_size"] / self.policy.sequence_length), 1 ) brain_params, self.demonstration_buffer = demo_to_buffer( trainer_parameters["demo_path"], self.policy.sequence_length ) policy_brain = copy.deepcopy(brain.__dict__) expert_brain = copy.deepcopy(brain_params.__dict__) policy_brain.pop("brain_name") expert_brain.pop("brain_name") if expert_brain != policy_brain: raise UnityTrainerException( "The provided demonstration is not compatible with the " "brain being used for performance evaluation." ) def __str__(self): return """Hyperparameters for the Imitation Trainer of brain {0}: \n{1}""".format( self.brain_name, "\n".join( [ "\t{0}:\t{1}".format(x, self.trainer_parameters[x]) for x in self.param_keys ] ), )