import attr import cattr from typing import Dict, Optional, List, Any, DefaultDict, Mapping from enum import Enum import collections import argparse from mlagents.trainers.cli_utils import StoreConfigFile, DetectDefault, parser from mlagents.trainers.cli_utils import load_config from mlagents.trainers.exception import TrainerConfigError from mlagents.trainers.models import ScheduleType, EncoderType from mlagents_envs import logging_util logger = logging_util.get_logger(__name__) def check_and_structure(key: str, value: Any, class_type: type) -> Any: attr_fields_dict = attr.fields_dict(class_type) if key not in attr_fields_dict: raise TrainerConfigError( f"The option {key} was specified in your YAML file for {class_type.__name__}, but is invalid." ) # Apply cattr structure to the values return cattr.structure(value, attr_fields_dict[key].type) def strict_to_cls(d: Mapping, t: type) -> Any: if not isinstance(d, Mapping): raise TrainerConfigError(f"Unsupported config {d} for {t.__name__}.") d_copy: Dict[str, Any] = {} d_copy.update(d) for key, val in d_copy.items(): d_copy[key] = check_and_structure(key, val, t) return t(**d_copy) def defaultdict_to_dict(d: DefaultDict) -> Dict: return {key: cattr.unstructure(val) for key, val in d.items()} @attr.s(auto_attribs=True) class ExportableSettings: def as_dict(self): return cattr.unstructure(self) @attr.s(auto_attribs=True) class NetworkSettings: @attr.s(auto_attribs=True) class MemorySettings: sequence_length: int = 64 memory_size: int = 128 normalize: bool = False hidden_units: int = 128 num_layers: int = 2 vis_encode_type: EncoderType = EncoderType.SIMPLE memory: Optional[MemorySettings] = None @attr.s(auto_attribs=True) class BehavioralCloningSettings: demo_path: str steps: int = 0 strength: float = 1.0 samples_per_update: int = 0 # Setting either of these to None will allow the Optimizer # to decide these parameters, based on Trainer hyperparams num_epoch: Optional[int] = None batch_size: Optional[int] = None @attr.s(auto_attribs=True) class HyperparamSettings: batch_size: int = 1024 buffer_size: int = 10240 learning_rate: float = 3.0e-4 learning_rate_schedule: ScheduleType = ScheduleType.CONSTANT @attr.s(auto_attribs=True) class PPOSettings(HyperparamSettings): beta: float = 5.0e-3 epsilon: float = 0.2 lambd: float = 0.95 num_epoch: int = 3 learning_rate_schedule: ScheduleType = ScheduleType.LINEAR @attr.s(auto_attribs=True) class SACSettings(HyperparamSettings): batch_size: int = 128 buffer_size: int = 50000 buffer_init_steps: int = 0 tau: float = 0.005 steps_per_update: float = 1 save_replay_buffer: bool = False init_entcoef: float = 1.0 reward_signal_steps_per_update: float = attr.ib() @reward_signal_steps_per_update.default def _reward_signal_steps_per_update_default(self): return self.steps_per_update class RewardSignalType(Enum): EXTRINSIC: str = "extrinsic" GAIL: str = "gail" CURIOSITY: str = "curiosity" def to_settings(self) -> type: _mapping = { RewardSignalType.EXTRINSIC: RewardSignalSettings, RewardSignalType.GAIL: GAILSettings, RewardSignalType.CURIOSITY: CuriositySettings, } return _mapping[self] @attr.s(auto_attribs=True) class RewardSignalSettings: gamma: float = 0.99 strength: float = 1.0 @staticmethod def structure(d: Mapping, t: type) -> Any: """ Helper method to structure a Dict of RewardSignalSettings class. Meant to be registered with cattr.register_structure_hook() and called with cattr.structure(). This is needed to handle the special Enum selection of RewardSignalSettings classes. """ if not isinstance(d, Mapping): raise TrainerConfigError(f"Unsupported reward signal configuration {d}.") d_final: Dict[RewardSignalType, RewardSignalSettings] = {} for key, val in d.items(): enum_key = RewardSignalType(key) t = enum_key.to_settings() d_final[enum_key] = strict_to_cls(val, t) return d_final @attr.s(auto_attribs=True) class GAILSettings(RewardSignalSettings): encoding_size: int = 64 learning_rate: float = 3e-4 use_actions: bool = False use_vail: bool = False demo_path: str = attr.ib(kw_only=True) @attr.s(auto_attribs=True) class CuriositySettings(RewardSignalSettings): encoding_size: int = 64 learning_rate: float = 3e-4 class ParameterRandomizationType(Enum): UNIFORM: str = "uniform" GAUSSIAN: str = "gaussian" MULTIRANGEUNIFORM: str = "multirangeuniform" def to_settings(self) -> type: _mapping = { ParameterRandomizationType.UNIFORM: UniformSettings, ParameterRandomizationType.GAUSSIAN: GaussianSettings, ParameterRandomizationType.MULTIRANGEUNIFORM: MultiRangeUniformSettings, } return _mapping[self] @attr.s(auto_attribs=True) class ParameterRandomizationSettings: seed: int = parser.get_default("seed") @staticmethod def structure(d: Mapping, t: type) -> Any: """ Helper method to structure a Dict of ParameterRandomizationSettings class. Meant to be registered with cattr.register_structure_hook() and called with cattr.structure(). This is needed to handle the special Enum selection of ParameterRandomizationSettings classes. """ if not isinstance(d, Mapping): raise TrainerConfigError( f"Unsupported parameter randomization configuration {d}." ) d_final: Dict[str, List[float]] = {} for param, param_config in d.items(): if param == "resampling-interval": logger.warning( "The resampling-interval is no longer necessary for parameter randomization. It is being ignored." ) continue if not isinstance(param_config, Mapping): raise TrainerConfigError( f"Unsupported distribution configuration {param_config}." ) for key, val in param_config.items(): enum_key = ParameterRandomizationType(key) t = enum_key.to_settings() d_final[param] = strict_to_cls(val, t) return d_final @attr.s(auto_attribs=True) class UniformSettings(ParameterRandomizationSettings): min_value: float = attr.ib() max_value: float = 1.0 @min_value.default def _min_value_default(self): return 1.0 @min_value.validator def _check_min_value(self, attribute, value): if self.min_value > self.max_value: raise TrainerConfigError( "Minimum value is greater than maximum value in uniform sampler." ) @attr.s(auto_attribs=True) class GaussianSettings(ParameterRandomizationSettings): mean: float = 1.0 st_dev: float = 1.0 @attr.s(auto_attribs=True) class MultiRangeUniformSettings(ParameterRandomizationSettings): intervals: List[List[float]] = attr.ib() @intervals.default def _intervals_default(self): return [[1.0, 1.0]] @intervals.validator def _check_intervals(self, attribute, value): for interval in self.intervals: if len(interval) != 2: raise TrainerConfigError( f"The sampling interval {interval} must contain exactly two values." ) [min_value, max_value] = interval if min_value > max_value: raise TrainerConfigError( f"Minimum value is greater than maximum value in interval {interval}." ) def to_float_encoding(self) -> List[float]: "Returns the sampler type followed by a flattened list of the interval values" return [value for interval in self.intervals for value in interval] @attr.s(auto_attribs=True) class SelfPlaySettings: save_steps: int = 20000 team_change: int = attr.ib() @team_change.default def _team_change_default(self): # Assign team_change to about 4x save_steps return self.save_steps * 5 swap_steps: int = 2000 window: int = 10 play_against_latest_model_ratio: float = 0.5 initial_elo: float = 1200.0 class TrainerType(Enum): PPO: str = "ppo" SAC: str = "sac" def to_settings(self) -> type: _mapping = {TrainerType.PPO: PPOSettings, TrainerType.SAC: SACSettings} return _mapping[self] @attr.s(auto_attribs=True) class TrainerSettings(ExportableSettings): trainer_type: TrainerType = TrainerType.PPO hyperparameters: HyperparamSettings = attr.ib() @hyperparameters.default def _set_default_hyperparameters(self): return self.trainer_type.to_settings()() network_settings: NetworkSettings = attr.ib(factory=NetworkSettings) reward_signals: Dict[RewardSignalType, RewardSignalSettings] = attr.ib( factory=lambda: {RewardSignalType.EXTRINSIC: RewardSignalSettings()} ) init_path: Optional[str] = None output_path: str = "default" keep_checkpoints: int = 5 checkpoint_interval: int = 500000 max_steps: int = 500000 time_horizon: int = 64 summary_freq: int = 50000 threaded: bool = True self_play: Optional[SelfPlaySettings] = None behavioral_cloning: Optional[BehavioralCloningSettings] = None cattr.register_structure_hook( Dict[RewardSignalType, RewardSignalSettings], RewardSignalSettings.structure ) @network_settings.validator def _check_batch_size_seq_length(self, attribute, value): if self.network_settings.memory is not None: if ( self.network_settings.memory.sequence_length > self.hyperparameters.batch_size ): raise TrainerConfigError( "When using memory, sequence length must be less than or equal to batch size. " ) @staticmethod def dict_to_defaultdict(d: Dict, t: type) -> DefaultDict: return collections.defaultdict( TrainerSettings, cattr.structure(d, Dict[str, TrainerSettings]) ) @staticmethod def structure(d: Mapping, t: type) -> Any: """ Helper method to structure a TrainerSettings class. Meant to be registered with cattr.register_structure_hook() and called with cattr.structure(). """ if not isinstance(d, Mapping): raise TrainerConfigError(f"Unsupported config {d} for {t.__name__}.") d_copy: Dict[str, Any] = {} d_copy.update(d) for key, val in d_copy.items(): if attr.has(type(val)): # Don't convert already-converted attrs classes. continue if key == "hyperparameters": if "trainer_type" not in d_copy: raise TrainerConfigError( "Hyperparameters were specified but no trainer_type was given." ) else: d_copy[key] = strict_to_cls( d_copy[key], TrainerType(d_copy["trainer_type"]).to_settings() ) elif key == "max_steps": d_copy[key] = int(float(val)) # In some legacy configs, max steps was specified as a float else: d_copy[key] = check_and_structure(key, val, t) return t(**d_copy) @attr.s(auto_attribs=True) class CurriculumSettings: class MeasureType: PROGRESS: str = "progress" REWARD: str = "reward" measure: str = attr.ib(default=MeasureType.REWARD) thresholds: List[int] = attr.ib(factory=list) min_lesson_length: int = 0 signal_smoothing: bool = True parameters: Dict[str, List[float]] = attr.ib(kw_only=True) @attr.s(auto_attribs=True) class CheckpointSettings: run_id: str = parser.get_default("run_id") initialize_from: str = parser.get_default("initialize_from") load_model: bool = parser.get_default("load_model") resume: bool = parser.get_default("resume") force: bool = parser.get_default("force") train_model: bool = parser.get_default("train_model") inference: bool = parser.get_default("inference") @attr.s(auto_attribs=True) class EnvironmentSettings: env_path: Optional[str] = parser.get_default("env_path") env_args: Optional[List[str]] = parser.get_default("env_args") base_port: int = parser.get_default("base_port") num_envs: int = parser.get_default("num_envs") seed: int = parser.get_default("seed") @attr.s(auto_attribs=True) class EngineSettings: width: int = parser.get_default("width") height: int = parser.get_default("height") quality_level: int = parser.get_default("quality_level") time_scale: float = parser.get_default("time_scale") target_frame_rate: int = parser.get_default("target_frame_rate") capture_frame_rate: int = parser.get_default("capture_frame_rate") no_graphics: bool = parser.get_default("no_graphics") @attr.s(auto_attribs=True) class RunOptions(ExportableSettings): behaviors: DefaultDict[str, TrainerSettings] = attr.ib( factory=lambda: collections.defaultdict(TrainerSettings) ) env_settings: EnvironmentSettings = attr.ib(factory=EnvironmentSettings) engine_settings: EngineSettings = attr.ib(factory=EngineSettings) parameter_randomization: Optional[Dict[str, ParameterRandomizationSettings]] = None curriculum: Optional[Dict[str, CurriculumSettings]] = None checkpoint_settings: CheckpointSettings = attr.ib(factory=CheckpointSettings) # These are options that are relevant to the run itself, and not the engine or environment. # They will be left here. debug: bool = parser.get_default("debug") # Strict conversion cattr.register_structure_hook(EnvironmentSettings, strict_to_cls) cattr.register_structure_hook(EngineSettings, strict_to_cls) cattr.register_structure_hook(CheckpointSettings, strict_to_cls) cattr.register_structure_hook( Dict[str, ParameterRandomizationSettings], ParameterRandomizationSettings.structure, ) cattr.register_structure_hook(CurriculumSettings, strict_to_cls) cattr.register_structure_hook(TrainerSettings, TrainerSettings.structure) cattr.register_structure_hook( DefaultDict[str, TrainerSettings], TrainerSettings.dict_to_defaultdict ) cattr.register_unstructure_hook(collections.defaultdict, defaultdict_to_dict) @staticmethod def from_argparse(args: argparse.Namespace) -> "RunOptions": """ Takes an argparse.Namespace as specified in `parse_command_line`, loads input configuration files from file paths, and converts to a RunOptions instance. :param args: collection of command-line parameters passed to mlagents-learn :return: RunOptions representing the passed in arguments, with trainer config, curriculum and sampler configs loaded from files. """ argparse_args = vars(args) config_path = StoreConfigFile.trainer_config_path # Load YAML configured_dict: Dict[str, Any] = { "checkpoint_settings": {}, "env_settings": {}, "engine_settings": {}, } if config_path is not None: configured_dict.update(load_config(config_path)) # Use the YAML file values for all values not specified in the CLI. for key in configured_dict.keys(): # Detect bad config options if key not in attr.fields_dict(RunOptions): raise TrainerConfigError( "The option {} was specified in your YAML file, but is invalid.".format( key ) ) # Override with CLI args # Keep deprecated --load working, TODO: remove argparse_args["resume"] = argparse_args["resume"] or argparse_args["load_model"] for key, val in argparse_args.items(): if key in DetectDefault.non_default_args: if key in attr.fields_dict(CheckpointSettings): configured_dict["checkpoint_settings"][key] = val elif key in attr.fields_dict(EnvironmentSettings): configured_dict["env_settings"][key] = val elif key in attr.fields_dict(EngineSettings): configured_dict["engine_settings"][key] = val else: # Base options configured_dict[key] = val return RunOptions.from_dict(configured_dict) @staticmethod def from_dict(options_dict: Dict[str, Any]) -> "RunOptions": return cattr.structure(options_dict, RunOptions)