# # Unity ML-Agents Toolkit from typing import Dict, List, Optional from collections import defaultdict import abc import time import attr import numpy as np from mlagents_envs.side_channel.stats_side_channel import StatsAggregationMethod from mlagents.trainers.policy.checkpoint_manager import ( ModelCheckpoint, ModelCheckpointManager, ) from mlagents_envs.logging_util import get_logger from mlagents_envs.timers import timed from mlagents.trainers.optimizer import Optimizer from mlagents.trainers.buffer import AgentBuffer, BufferKey from mlagents.trainers.trainer import Trainer from mlagents.trainers.torch.components.reward_providers.base_reward_provider import ( BaseRewardProvider, ) from mlagents_envs.timers import hierarchical_timer from mlagents_envs.base_env import BehaviorSpec from mlagents.trainers.policy.policy import Policy from mlagents.trainers.policy.torch_policy import TorchPolicy from mlagents.trainers.model_saver.torch_model_saver import TorchModelSaver from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers from mlagents.trainers.agent_processor import AgentManagerQueue from mlagents.trainers.trajectory import Trajectory from mlagents.trainers.settings import TrainerSettings from mlagents.trainers.stats import StatsPropertyType from mlagents.trainers.model_saver.model_saver import BaseModelSaver logger = get_logger(__name__) class RLTrainer(Trainer): """ This class is the base class for trainers that use Reward Signals. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # collected_rewards is a dictionary from name of reward signal to a dictionary of agent_id to cumulative reward # used for reporting only. We always want to report the environment reward to Tensorboard, regardless # of what reward signals are actually present. self.cumulative_returns_since_policy_update: List[float] = [] self.collected_rewards: Dict[str, Dict[str, int]] = { "environment": defaultdict(lambda: 0) } self.update_buffer: AgentBuffer = AgentBuffer() self._stats_reporter.add_property( StatsPropertyType.HYPERPARAMETERS, self.trainer_settings.as_dict() ) self._next_save_step = 0 self._next_summary_step = 0 self.model_saver = self.create_model_saver( self.trainer_settings, self.artifact_path, self.load ) self._has_warned_group_rewards = False def end_episode(self) -> None: """ A signal that the Episode has ended. The buffer must be reset. Get only called when the academy resets. """ for rewards in self.collected_rewards.values(): for agent_id in rewards: rewards[agent_id] = 0 def _update_end_episode_stats(self, agent_id: str, optimizer: Optimizer) -> None: for name, rewards in self.collected_rewards.items(): if name == "environment": self.stats_reporter.add_stat( "Environment/Cumulative Reward", rewards.get(agent_id, 0), aggregation=StatsAggregationMethod.HISTOGRAM, ) self.cumulative_returns_since_policy_update.append( rewards.get(agent_id, 0) ) self.reward_buffer.appendleft(rewards.get(agent_id, 0)) rewards[agent_id] = 0 else: if isinstance(optimizer.reward_signals[name], BaseRewardProvider): self.stats_reporter.add_stat( f"Policy/{optimizer.reward_signals[name].name.capitalize()} Reward", rewards.get(agent_id, 0), ) else: self.stats_reporter.add_stat( optimizer.reward_signals[name].stat_name, rewards.get(agent_id, 0), ) rewards[agent_id] = 0 def _clear_update_buffer(self) -> None: """ Clear the buffers that have been built up during inference. """ self.update_buffer.reset_agent() @abc.abstractmethod def _is_ready_update(self): """ Returns whether or not the trainer has enough elements to run update model :return: A boolean corresponding to wether or not update_model() can be run """ return False def create_policy( self, parsed_behavior_id: BehaviorIdentifiers, behavior_spec: BehaviorSpec, create_graph: bool = False, ) -> Policy: return self.create_torch_policy(parsed_behavior_id, behavior_spec) @abc.abstractmethod def create_torch_policy( self, parsed_behavior_id: BehaviorIdentifiers, behavior_spec: BehaviorSpec ) -> TorchPolicy: """ Create a Policy object that uses the PyTorch backend. """ pass @staticmethod def create_model_saver( trainer_settings: TrainerSettings, model_path: str, load: bool ) -> BaseModelSaver: model_saver = TorchModelSaver( # type: ignore trainer_settings, model_path, load ) return model_saver def _policy_mean_reward(self) -> Optional[float]: """ Returns the mean episode reward for the current policy. """ rewards = self.cumulative_returns_since_policy_update if len(rewards) == 0: return None else: return sum(rewards) / len(rewards) @timed def _checkpoint(self) -> ModelCheckpoint: """ Checkpoints the policy associated with this trainer. """ n_policies = len(self.policies.keys()) if n_policies > 1: logger.warning( "Trainer has multiple policies, but default behavior only saves the first." ) checkpoint_path = self.model_saver.save_checkpoint(self.brain_name, self._step) export_ext = "onnx" new_checkpoint = ModelCheckpoint( int(self._step), f"{checkpoint_path}.{export_ext}", self._policy_mean_reward(), time.time(), ) ModelCheckpointManager.add_checkpoint( self.brain_name, new_checkpoint, self.trainer_settings.keep_checkpoints ) return new_checkpoint def save_model(self) -> None: """ Saves the policy associated with this trainer. """ n_policies = len(self.policies.keys()) if n_policies > 1: logger.warning( "Trainer has multiple policies, but default behavior only saves the first." ) elif n_policies == 0: logger.warning("Trainer has no policies, not saving anything.") return model_checkpoint = self._checkpoint() self.model_saver.copy_final_model(model_checkpoint.file_path) export_ext = "onnx" final_checkpoint = attr.evolve( model_checkpoint, file_path=f"{self.model_saver.model_path}.{export_ext}" ) ModelCheckpointManager.track_final_checkpoint(self.brain_name, final_checkpoint) @abc.abstractmethod def _update_policy(self) -> bool: """ Uses demonstration_buffer to update model. :return: Whether or not the policy was updated. """ pass def _increment_step(self, n_steps: int, name_behavior_id: str) -> None: """ Increment the step count of the trainer :param n_steps: number of steps to increment the step count by """ self._step += n_steps self._next_summary_step = self._get_next_interval_step(self.summary_freq) self._next_save_step = self._get_next_interval_step( self.trainer_settings.checkpoint_interval ) p = self.get_policy(name_behavior_id) if p: p.increment_step(n_steps) def _get_next_interval_step(self, interval: int) -> int: """ Get the next step count that should result in an action. :param interval: The interval between actions. """ return self._step + (interval - self._step % interval) def _write_summary(self, step: int) -> None: """ Saves training statistics to Tensorboard. """ self.stats_reporter.add_stat("Is Training", float(self.should_still_train)) self.stats_reporter.write_stats(int(step)) @abc.abstractmethod def _process_trajectory(self, trajectory: Trajectory) -> None: """ Takes a trajectory and processes it, putting it into the update buffer. :param trajectory: The Trajectory tuple containing the steps to be processed. """ self._maybe_write_summary(self.get_step + len(trajectory.steps)) self._maybe_save_model(self.get_step + len(trajectory.steps)) self._increment_step(len(trajectory.steps), trajectory.behavior_id) def _maybe_write_summary(self, step_after_process: int) -> None: """ If processing the trajectory will make the step exceed the next summary write, write the summary. This logic ensures summaries are written on the update step and not in between. :param step_after_process: the step count after processing the next trajectory. """ if self._next_summary_step == 0: # Don't write out the first one self._next_summary_step = self._get_next_interval_step(self.summary_freq) if step_after_process >= self._next_summary_step and self.get_step != 0: self._write_summary(self._next_summary_step) def _maybe_save_model(self, step_after_process: int) -> None: """ If processing the trajectory will make the step exceed the next model write, save the model. This logic ensures models are written on the update step and not in between. :param step_after_process: the step count after processing the next trajectory. """ if self._next_save_step == 0: # Don't save the first one self._next_save_step = self._get_next_interval_step( self.trainer_settings.checkpoint_interval ) if step_after_process >= self._next_save_step and self.get_step != 0: self._checkpoint() def _warn_if_group_reward(self, buffer: AgentBuffer) -> None: """ Warn if the trainer receives a Group Reward but isn't a multiagent trainer (e.g. POCA). """ if not self._has_warned_group_rewards: group_reward = np.sum(buffer[BufferKey.GROUP_REWARD]) if group_reward > 0.0: logger.warning( "An agent recieved a Group Reward, but you are not using a multi-agent trainer. " "Please use the POCA trainer for best results." ) self._has_warned_group_rewards = True def advance(self) -> None: """ Steps the trainer, taking in trajectories and updates if ready. Will block and wait briefly if there are no trajectories. """ with hierarchical_timer("process_trajectory"): for traj_queue in self.trajectory_queues: # We grab at most the maximum length of the queue. # This ensures that even if the queue is being filled faster than it is # being emptied, the trajectories in the queue are on-policy. _queried = False for _ in range(traj_queue.qsize()): _queried = True try: t = traj_queue.get_nowait() self._process_trajectory(t) except AgentManagerQueue.Empty: break if self.threaded and not _queried: # Yield thread to avoid busy-waiting time.sleep(0.0001) if self.should_still_train: if self._is_ready_update(): with hierarchical_timer("_update_policy"): if self._update_policy(): for q in self.policy_queues: # Get policies that correspond to the policy queue in question q.put(self.get_policy(q.behavior_id)) else: self._clear_update_buffer()