# # Unity ML-Agents Toolkit import argparse import os import numpy as np import json from typing import Callable, Optional, List, NamedTuple, Dict import mlagents.trainers import mlagents_envs from mlagents import tf_utils from mlagents.trainers.trainer_controller import TrainerController from mlagents.trainers.meta_curriculum import MetaCurriculum from mlagents.trainers.trainer_util import ( load_config, TrainerFactory, handle_existing_directories, ) from mlagents.trainers.stats import ( TensorboardWriter, CSVWriter, StatsReporter, GaugeWriter, ConsoleWriter, ) from mlagents_envs.environment import UnityEnvironment from mlagents.trainers.sampler_class import SamplerManager from mlagents.trainers.exception import SamplerException from mlagents_envs.base_env import BaseEnv from mlagents.trainers.subprocess_env_manager import SubprocessEnvManager from mlagents_envs.side_channel.side_channel import SideChannel from mlagents_envs.side_channel.engine_configuration_channel import EngineConfig from mlagents_envs.exception import UnityEnvironmentException from mlagents_envs.timers import ( hierarchical_timer, get_timer_tree, add_metadata as add_timer_metadata, ) from mlagents_envs import logging_util logger = logging_util.get_logger(__name__) def _create_parser(): argparser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) argparser.add_argument("trainer_config_path") argparser.add_argument( "--env", default=None, dest="env_path", help="Path to the Unity executable to train", ) argparser.add_argument( "--curriculum", default=None, dest="curriculum_config_path", help="YAML file for defining the lessons for curriculum training", ) argparser.add_argument( "--lesson", default=0, type=int, help="The lesson to start with when performing curriculum training", ) argparser.add_argument( "--sampler", default=None, dest="sampler_file_path", help="YAML file for defining the sampler for environment parameter randomization", ) argparser.add_argument( "--keep-checkpoints", default=5, type=int, help="The maximum number of model checkpoints to keep. Checkpoints are saved after the" "number of steps specified by the save-freq option. Once the maximum number of checkpoints" "has been reached, the oldest checkpoint is deleted when saving a new checkpoint.", ) argparser.add_argument( "--load", default=False, dest="load_model", action="store_true", help=argparse.SUPPRESS, # Deprecated but still usable for now. ) argparser.add_argument( "--resume", default=False, dest="resume", action="store_true", help="Whether to resume training from a checkpoint. Specify a --run-id to use this option. " "If set, the training code loads an already trained model to initialize the neural network " "before resuming training. This option is only valid when the models exist, and have the same " "behavior names as the current agents in your scene.", ) argparser.add_argument( "--force", default=False, dest="force", action="store_true", help="Whether to force-overwrite this run-id's existing summary and model data. (Without " "this flag, attempting to train a model with a run-id that has been used before will throw " "an error.", ) argparser.add_argument( "--run-id", default="ppo", help="The identifier for the training run. This identifier is used to name the " "subdirectories in which the trained model and summary statistics are saved as well " "as the saved model itself. If you use TensorBoard to view the training statistics, " "always set a unique run-id for each training run. (The statistics for all runs with the " "same id are combined as if they were produced by a the same session.)", ) argparser.add_argument( "--initialize-from", metavar="RUN_ID", default=None, help="Specify a previously saved run ID from which to initialize the model from. " "This can be used, for instance, to fine-tune an existing model on a new environment. " "Note that the previously saved models must have the same behavior parameters as your " "current environment.", ) argparser.add_argument( "--save-freq", default=50000, type=int, help="How often (in steps) to save the model during training", ) argparser.add_argument( "--seed", default=-1, type=int, help="A number to use as a seed for the random number generator used by the training code", ) argparser.add_argument( "--train", default=False, dest="train_model", action="store_true", help=argparse.SUPPRESS, ) argparser.add_argument( "--inference", default=False, dest="inference", action="store_true", help="Whether to run in Python inference mode (i.e. no training). Use with --resume to load " "a model trained with an existing run ID.", ) argparser.add_argument( "--base-port", default=UnityEnvironment.BASE_ENVIRONMENT_PORT, type=int, help="The starting port for environment communication. Each concurrent Unity environment " "instance will get assigned a port sequentially, starting from the base-port. Each instance " "will use the port (base_port + worker_id), where the worker_id is sequential IDs given to " "each instance from 0 to (num_envs - 1). Note that when training using the Editor rather " "than an executable, the base port will be ignored.", ) argparser.add_argument( "--num-envs", default=1, type=int, help="The number of concurrent Unity environment instances to collect experiences " "from when training", ) argparser.add_argument( "--no-graphics", default=False, action="store_true", help="Whether to run the Unity executable in no-graphics mode (i.e. without initializing " "the graphics driver. Use this only if your agents don't use visual observations.", ) argparser.add_argument( "--debug", default=False, action="store_true", help="Whether to enable debug-level logging for some parts of the code", ) argparser.add_argument( "--env-args", default=None, nargs=argparse.REMAINDER, help="Arguments passed to the Unity executable. Be aware that the standalone build will also " "process these as Unity Command Line Arguments. You should choose different argument names if " "you want to create environment-specific arguments. All arguments after this flag will be " "passed to the executable.", ) argparser.add_argument( "--cpu", default=False, action="store_true", help="Forces training using CPU only", ) argparser.add_argument("--version", action="version", version="") eng_conf = argparser.add_argument_group(title="Engine Configuration") eng_conf.add_argument( "--width", default=84, type=int, help="The width of the executable window of the environment(s) in pixels " "(ignored for editor training).", ) eng_conf.add_argument( "--height", default=84, type=int, help="The height of the executable window of the environment(s) in pixels " "(ignored for editor training)", ) eng_conf.add_argument( "--quality-level", default=5, type=int, help="The quality level of the environment(s). Equivalent to calling " "QualitySettings.SetQualityLevel in Unity.", ) eng_conf.add_argument( "--time-scale", default=20, type=float, help="The time scale of the Unity environment(s). Equivalent to setting " "Time.timeScale in Unity.", ) eng_conf.add_argument( "--target-frame-rate", default=-1, type=int, help="The target frame rate of the Unity environment(s). Equivalent to setting " "Application.targetFrameRate in Unity.", ) eng_conf.add_argument( "--capture-frame-rate", default=60, type=int, help="The capture frame rate of the Unity environment(s). Equivalent to setting " "Time.captureFramerate in Unity.", ) return argparser parser = _create_parser() class RunOptions(NamedTuple): trainer_config: Dict debug: bool = parser.get_default("debug") seed: int = parser.get_default("seed") env_path: Optional[str] = parser.get_default("env_path") run_id: str = parser.get_default("run_id") initialize_from: str = parser.get_default("initialize_from") load_model: bool = parser.get_default("load_model") resume: bool = parser.get_default("resume") force: bool = parser.get_default("force") train_model: bool = parser.get_default("train_model") inference: bool = parser.get_default("inference") save_freq: int = parser.get_default("save_freq") keep_checkpoints: int = parser.get_default("keep_checkpoints") base_port: int = parser.get_default("base_port") num_envs: int = parser.get_default("num_envs") curriculum_config: Optional[Dict] = None lesson: int = parser.get_default("lesson") no_graphics: bool = parser.get_default("no_graphics") multi_gpu: bool = parser.get_default("multi_gpu") sampler_config: Optional[Dict] = None env_args: Optional[List[str]] = parser.get_default("env_args") cpu: bool = parser.get_default("cpu") width: int = parser.get_default("width") height: int = parser.get_default("height") quality_level: int = parser.get_default("quality_level") time_scale: float = parser.get_default("time_scale") target_frame_rate: int = parser.get_default("target_frame_rate") capture_frame_rate: int = parser.get_default("capture_frame_rate") @staticmethod def from_argparse(args: argparse.Namespace) -> "RunOptions": """ Takes an argparse.Namespace as specified in `parse_command_line`, loads input configuration files from file paths, and converts to a CommandLineOptions instance. :param args: collection of command-line parameters passed to mlagents-learn :return: CommandLineOptions representing the passed in arguments, with trainer config, curriculum and sampler configs loaded from files. """ argparse_args = vars(args) trainer_config_path = argparse_args["trainer_config_path"] curriculum_config_path = argparse_args["curriculum_config_path"] argparse_args["trainer_config"] = load_config(trainer_config_path) if curriculum_config_path is not None: argparse_args["curriculum_config"] = load_config(curriculum_config_path) if argparse_args["sampler_file_path"] is not None: argparse_args["sampler_config"] = load_config( argparse_args["sampler_file_path"] ) # Keep deprecated --load working, TODO: remove argparse_args["resume"] = argparse_args["resume"] or argparse_args["load_model"] # Since argparse accepts file paths in the config options which don't exist in CommandLineOptions, # these keys will need to be deleted to use the **/splat operator below. argparse_args.pop("sampler_file_path") argparse_args.pop("curriculum_config_path") argparse_args.pop("trainer_config_path") return RunOptions(**vars(args)) def get_version_string() -> str: # pylint: disable=no-member return f""" Version information: ml-agents: {mlagents.trainers.__version__}, ml-agents-envs: {mlagents_envs.__version__}, Communicator API: {UnityEnvironment.API_VERSION}, TensorFlow: {tf_utils.tf.__version__}""" def parse_command_line(argv: Optional[List[str]] = None) -> RunOptions: args = parser.parse_args(argv) return RunOptions.from_argparse(args) def run_training(run_seed: int, options: RunOptions) -> None: """ Launches training session. :param options: parsed command line arguments :param run_seed: Random seed used for training. :param run_options: Command line arguments for training. """ with hierarchical_timer("run_training.setup"): model_path = f"./models/{options.run_id}" maybe_init_path = ( f"./models/{options.initialize_from}" if options.initialize_from else None ) summaries_dir = "./summaries" port = options.base_port # Configure CSV, Tensorboard Writers and StatsReporter # We assume reward and episode length are needed in the CSV. csv_writer = CSVWriter( summaries_dir, required_fields=[ "Environment/Cumulative Reward", "Environment/Episode Length", ], ) handle_existing_directories( model_path, summaries_dir, options.resume, options.force, maybe_init_path ) tb_writer = TensorboardWriter(summaries_dir, clear_past_data=not options.resume) gauge_write = GaugeWriter() console_writer = ConsoleWriter() StatsReporter.add_writer(tb_writer) StatsReporter.add_writer(csv_writer) StatsReporter.add_writer(gauge_write) StatsReporter.add_writer(console_writer) if options.env_path is None: port = UnityEnvironment.DEFAULT_EDITOR_PORT env_factory = create_environment_factory( options.env_path, options.no_graphics, run_seed, port, options.env_args ) engine_config = EngineConfig( width=options.width, height=options.height, quality_level=options.quality_level, time_scale=options.time_scale, target_frame_rate=options.target_frame_rate, capture_frame_rate=options.capture_frame_rate, ) env_manager = SubprocessEnvManager(env_factory, engine_config, options.num_envs) maybe_meta_curriculum = try_create_meta_curriculum( options.curriculum_config, env_manager, options.lesson ) sampler_manager, resampling_interval = create_sampler_manager( options.sampler_config, run_seed ) trainer_factory = TrainerFactory( options.trainer_config, summaries_dir, options.run_id, model_path, options.keep_checkpoints, not options.inference, options.resume, run_seed, maybe_init_path, maybe_meta_curriculum, options.multi_gpu, ) # Create controller and begin training. tc = TrainerController( trainer_factory, model_path, summaries_dir, options.run_id, options.save_freq, maybe_meta_curriculum, not options.inference, run_seed, sampler_manager, resampling_interval, ) # Begin training try: tc.start_learning(env_manager) finally: env_manager.close() write_timing_tree(summaries_dir, options.run_id) def write_timing_tree(summaries_dir: str, run_id: str) -> None: timing_path = f"{summaries_dir}/{run_id}_timers.json" try: with open(timing_path, "w") as f: json.dump(get_timer_tree(), f, indent=4) except FileNotFoundError: logger.warning( f"Unable to save to {timing_path}. Make sure the directory exists" ) def create_sampler_manager(sampler_config, run_seed=None): resample_interval = None if sampler_config is not None: if "resampling-interval" in sampler_config: # Filter arguments that do not exist in the environment resample_interval = sampler_config.pop("resampling-interval") if (resample_interval <= 0) or (not isinstance(resample_interval, int)): raise SamplerException( "Specified resampling-interval is not valid. Please provide" " a positive integer value for resampling-interval" ) else: raise SamplerException( "Resampling interval was not specified in the sampler file." " Please specify it with the 'resampling-interval' key in the sampler config file." ) sampler_manager = SamplerManager(sampler_config, run_seed) return sampler_manager, resample_interval def try_create_meta_curriculum( curriculum_config: Optional[Dict], env: SubprocessEnvManager, lesson: int ) -> Optional[MetaCurriculum]: if curriculum_config is None: return None else: meta_curriculum = MetaCurriculum(curriculum_config) # TODO: Should be able to start learning at different lesson numbers # for each curriculum. meta_curriculum.set_all_curricula_to_lesson_num(lesson) return meta_curriculum def create_environment_factory( env_path: Optional[str], no_graphics: bool, seed: int, start_port: int, env_args: Optional[List[str]], ) -> Callable[[int, List[SideChannel]], BaseEnv]: if env_path is not None: launch_string = UnityEnvironment.validate_environment_path(env_path) if launch_string is None: raise UnityEnvironmentException( f"Couldn't launch the {env_path} environment. Provided filename does not match any environments." ) def create_unity_environment( worker_id: int, side_channels: List[SideChannel] ) -> UnityEnvironment: # Make sure that each environment gets a different seed env_seed = seed + worker_id return UnityEnvironment( file_name=env_path, worker_id=worker_id, seed=env_seed, no_graphics=no_graphics, base_port=start_port, args=env_args, side_channels=side_channels, ) return create_unity_environment def run_cli(options: RunOptions) -> None: try: print( """ ▄▄▄▓▓▓▓ ╓▓▓▓▓▓▓█▓▓▓▓▓ ,▄▄▄m▀▀▀' ,▓▓▓▀▓▓▄ ▓▓▓ ▓▓▌ ▄▓▓▓▀' ▄▓▓▀ ▓▓▓ ▄▄ ▄▄ ,▄▄ ▄▄▄▄ ,▄▄ ▄▓▓▌▄ ▄▄▄ ,▄▄ ▄▓▓▓▀ ▄▓▓▀ ▐▓▓▌ ▓▓▌ ▐▓▓ ▐▓▓▓▀▀▀▓▓▌ ▓▓▓ ▀▓▓▌▀ ^▓▓▌ ╒▓▓▌ ▄▓▓▓▓▓▄▄▄▄▄▄▄▄▓▓▓ ▓▀ ▓▓▌ ▐▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▌ ▐▓▓▄ ▓▓▌ ▀▓▓▓▓▀▀▀▀▀▀▀▀▀▀▓▓▄ ▓▓ ▓▓▌ ▐▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▌ ▐▓▓▐▓▓ ^█▓▓▓ ▀▓▓▄ ▐▓▓▌ ▓▓▓▓▄▓▓▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▓▄ ▓▓▓▓` '▀▓▓▓▄ ^▓▓▓ ▓▓▓ └▀▀▀▀ ▀▀ ^▀▀ `▀▀ `▀▀ '▀▀ ▐▓▓▌ ▀▀▀▀▓▄▄▄ ▓▓▓▓▓▓, ▓▓▓▓▀ `▀█▓▓▓▓▓▓▓▓▓▌ ¬`▀▀▀█▓ """ ) except Exception: print("\n\n\tUnity Technologies\n") print(get_version_string()) if options.debug: log_level = logging_util.DEBUG else: log_level = logging_util.INFO # disable noisy warnings from tensorflow tf_utils.set_warnings_enabled(False) logging_util.set_log_level(log_level) logger.debug("Configuration for this run:") logger.debug(json.dumps(options._asdict(), indent=4)) # Options deprecation warnings if options.load_model: logger.warning( "The --load option has been deprecated. Please use the --resume option instead." ) if options.train_model: logger.warning( "The --train option has been deprecated. Train mode is now the default. Use " "--inference to run in inference mode." ) run_seed = options.seed if options.cpu: os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Add some timer metadata add_timer_metadata("mlagents_version", mlagents.trainers.__version__) add_timer_metadata("mlagents_envs_version", mlagents_envs.__version__) add_timer_metadata("communication_protocol_version", UnityEnvironment.API_VERSION) add_timer_metadata("tensorflow_version", tf_utils.tf.__version__) if options.seed == -1: run_seed = np.random.randint(0, 10000) run_training(run_seed, options) def main(): run_cli(parse_command_line()) # For python debugger to directly run this script if __name__ == "__main__": main()