# # Unity ML-Agents Toolkit from typing import Dict, List, Deque, Any import time import abc from mlagents.tf_utils import tf from mlagents import tf_utils from collections import deque from mlagents_envs.timers import set_gauge from mlagents_envs.logging_util import get_logger from mlagents.model_serialization import export_policy_model, SerializationSettings from mlagents.trainers.policy.tf_policy import TFPolicy from mlagents.trainers.stats import StatsReporter from mlagents.trainers.trajectory import Trajectory from mlagents.trainers.agent_processor import AgentManagerQueue from mlagents.trainers.brain import BrainParameters from mlagents.trainers.policy import Policy from mlagents.trainers.exception import UnityTrainerException from mlagents_envs.timers import hierarchical_timer logger = get_logger(__name__) class Trainer(abc.ABC): """This class is the base class for the mlagents_envs.trainers""" def __init__( self, brain_name: str, trainer_parameters: dict, training: bool, run_id: str, reward_buff_cap: int = 1, ): """ Responsible for collecting experiences and training a neural network model. :BrainParameters brain: Brain to be trained. :dict trainer_parameters: The parameters for the trainer (dictionary). :bool training: Whether the trainer is set for training. :str run_id: The identifier of the current run :int reward_buff_cap: """ self.param_keys: List[str] = [] self.brain_name = brain_name self.run_id = run_id self.trainer_parameters = trainer_parameters self.summary_path = trainer_parameters["summary_path"] self.stats_reporter = StatsReporter(self.summary_path) self.cumulative_returns_since_policy_update: List[float] = [] self.is_training = training self._reward_buffer: Deque[float] = deque(maxlen=reward_buff_cap) self.policy_queues: List[AgentManagerQueue[Policy]] = [] self.trajectory_queues: List[AgentManagerQueue[Trajectory]] = [] self.step: int = 0 self.training_start_time = time.time() self.summary_freq = self.trainer_parameters["summary_freq"] self.next_summary_step = self.summary_freq def _check_param_keys(self): for k in self.param_keys: if k not in self.trainer_parameters: raise UnityTrainerException( "The hyper-parameter {0} could not be found for the {1} trainer of " "brain {2}.".format(k, self.__class__, self.brain_name) ) def write_tensorboard_text(self, key: str, input_dict: Dict[str, Any]) -> None: """ Saves text to Tensorboard. Note: Only works on tensorflow r1.2 or above. :param key: The name of the text. :param input_dict: A dictionary that will be displayed in a table on Tensorboard. """ try: with tf.Session(config=tf_utils.generate_session_config()) as sess: s_op = tf.summary.text( key, tf.convert_to_tensor( ([[str(x), str(input_dict[x])] for x in input_dict]) ), ) s = sess.run(s_op) self.stats_reporter.write_text(s, self.get_step) except Exception: logger.info("Could not write text summary for Tensorboard.") pass def _dict_to_str(self, param_dict: Dict[str, Any], num_tabs: int) -> str: """ Takes a parameter dictionary and converts it to a human-readable string. Recurses if there are multiple levels of dict. Used to print out hyperaparameters. param: param_dict: A Dictionary of key, value parameters. return: A string version of this dictionary. """ if not isinstance(param_dict, dict): return str(param_dict) else: append_newline = "\n" if num_tabs > 0 else "" return append_newline + "\n".join( [ "\t" + " " * num_tabs + "{0}:\t{1}".format( x, self._dict_to_str(param_dict[x], num_tabs + 1) ) for x in param_dict ] ) def __str__(self) -> str: return """Hyperparameters for the {0} of brain {1}: \n{2}""".format( self.__class__.__name__, self.brain_name, self._dict_to_str(self.trainer_parameters, 0), ) @property def parameters(self) -> Dict[str, Any]: """ Returns the trainer parameters of the trainer. """ return self.trainer_parameters @property def get_max_steps(self) -> int: """ Returns the maximum number of steps. Is used to know when the trainer should be stopped. :return: The maximum number of steps of the trainer """ return int(float(self.trainer_parameters["max_steps"])) @property def get_step(self) -> int: """ Returns the number of steps the trainer has performed :return: the step count of the trainer """ return self.step @property def should_still_train(self) -> bool: """ Returns whether or not the trainer should train. A Trainer could stop training if it wasn't training to begin with, or if max_steps is reached. """ return self.is_training and self.get_step <= self.get_max_steps @property def reward_buffer(self) -> Deque[float]: """ Returns the reward buffer. The reward buffer contains the cumulative rewards of the most recent episodes completed by agents using this trainer. :return: the reward buffer. """ return self._reward_buffer def _increment_step(self, n_steps: int, name_behavior_id: str) -> None: """ Increment the step count of the trainer :param n_steps: number of steps to increment the step count by """ self.step += n_steps self.next_summary_step = self._get_next_summary_step() p = self.get_policy(name_behavior_id) if p: p.increment_step(n_steps) def _get_next_summary_step(self) -> int: """ Get the next step count that should result in a summary write. """ return self.step + (self.summary_freq - self.step % self.summary_freq) def save_model(self, name_behavior_id: str) -> None: """ Saves the model """ self.get_policy(name_behavior_id).save_model(self.get_step) def export_model(self, name_behavior_id: str) -> None: """ Exports the model """ policy = self.get_policy(name_behavior_id) settings = SerializationSettings(policy.model_path, policy.brain.brain_name) export_policy_model(settings, policy.graph, policy.sess) def _write_summary(self, step: int) -> None: """ Saves training statistics to Tensorboard. """ is_training = "Training." if self.should_still_train else "Not Training." stats_summary = self.stats_reporter.get_stats_summaries( "Environment/Cumulative Reward" ) if stats_summary.num > 0: logger.info( "{}: {}: Step: {}. " "Time Elapsed: {:0.3f} s " "Mean " "Reward: {:0.3f}" ". Std of Reward: {:0.3f}. {}".format( self.run_id, self.brain_name, step, time.time() - self.training_start_time, stats_summary.mean, stats_summary.std, is_training, ) ) set_gauge(f"{self.brain_name}.mean_reward", stats_summary.mean) else: logger.info( " {}: {}: Step: {}. No episode was completed since last summary. {}".format( self.run_id, self.brain_name, step, is_training ) ) self.stats_reporter.write_stats(int(step)) @abc.abstractmethod def _process_trajectory(self, trajectory: Trajectory) -> None: """ Takes a trajectory and processes it, putting it into the update buffer. :param trajectory: The Trajectory tuple containing the steps to be processed. """ self._maybe_write_summary(self.get_step + len(trajectory.steps)) self._increment_step(len(trajectory.steps), trajectory.behavior_id) def _maybe_write_summary(self, step_after_process: int) -> None: """ If processing the trajectory will make the step exceed the next summary write, write the summary. This logic ensures summaries are written on the update step and not in between. :param step_after_process: the step count after processing the next trajectory. """ if step_after_process >= self.next_summary_step and self.get_step != 0: self._write_summary(self.next_summary_step) @abc.abstractmethod def end_episode(self): """ A signal that the Episode has ended. The buffer must be reset. Get only called when the academy resets. """ pass @abc.abstractmethod def create_policy(self, brain_parameters: BrainParameters) -> TFPolicy: """ Creates policy """ pass @abc.abstractmethod def add_policy(self, name_behavior_id: str, policy: TFPolicy) -> None: """ Adds policy to trainer """ pass @abc.abstractmethod def get_policy(self, name_behavior_id: str) -> TFPolicy: """ Gets policy from trainer """ pass @abc.abstractmethod def _is_ready_update(self): """ Returns whether or not the trainer has enough elements to run update model :return: A boolean corresponding to wether or not update_model() can be run """ return False @abc.abstractmethod def _update_policy(self): """ Uses demonstration_buffer to update model. """ pass def advance(self) -> None: """ Steps the trainer, taking in trajectories and updates if ready. """ with hierarchical_timer("process_trajectory"): for traj_queue in self.trajectory_queues: # We grab at most the maximum length of the queue. # This ensures that even if the queue is being filled faster than it is # being emptied, the trajectories in the queue are on-policy. for _ in range(traj_queue.maxlen): try: t = traj_queue.get_nowait() self._process_trajectory(t) except AgentManagerQueue.Empty: break if self.should_still_train: if self._is_ready_update(): with hierarchical_timer("_update_policy"): self._update_policy() for q in self.policy_queues: # Get policies that correspond to the policy queue in question q.put(self.get_policy(q.behavior_id)) def publish_policy_queue(self, policy_queue: AgentManagerQueue[Policy]) -> None: """ Adds a policy queue to the list of queues to publish to when this Trainer makes a policy update :param queue: Policy queue to publish to. """ self.policy_queues.append(policy_queue) def subscribe_trajectory_queue( self, trajectory_queue: AgentManagerQueue[Trajectory] ) -> None: """ Adds a trajectory queue to the list of queues for the trainer to ingest Trajectories from. :param queue: Trajectory queue to publish to. """ self.trajectory_queues.append(trajectory_queue)