import atexit import glob import logging import numpy as np import os import subprocess from typing import * from mlagents.envs.base_unity_environment import BaseUnityEnvironment from mlagents.envs.timers import timed, hierarchical_timer from .brain import AllBrainInfo, BrainInfo, BrainParameters from .exception import ( UnityEnvironmentException, UnityCommunicationException, UnityActionException, UnityTimeOutException, ) from .communicator_objects import ( UnityRLInput, UnityRLOutput, AgentActionProto, EnvironmentParametersProto, UnityRLInitializationInput, UnityRLInitializationOutput, UnityInput, UnityOutput, CustomResetParameters, CustomAction, ) from .rpc_communicator import RpcCommunicator from sys import platform logging.basicConfig(level=logging.INFO) logger = logging.getLogger("mlagents.envs") class UnityEnvironment(BaseUnityEnvironment): SCALAR_ACTION_TYPES = (int, np.int32, np.int64, float, np.float32, np.float64) SINGLE_BRAIN_ACTION_TYPES = SCALAR_ACTION_TYPES + (list, np.ndarray) SINGLE_BRAIN_TEXT_TYPES = (str, list, np.ndarray) def __init__( self, file_name: Optional[str] = None, worker_id: int = 0, base_port: int = 5005, seed: int = 0, docker_training: bool = False, no_graphics: bool = False, timeout_wait: int = 30, args: list = [], ): """ Starts a new unity environment and establishes a connection with the environment. Notice: Currently communication between Unity and Python takes place over an open socket without authentication. Ensure that the network where training takes place is secure. :string file_name: Name of Unity environment binary. :int base_port: Baseline port number to connect to Unity environment over. worker_id increments over this. :int worker_id: Number to add to communication port (5005) [0]. Used for asynchronous agent scenarios. :bool docker_training: Informs this class whether the process is being run within a container. :bool no_graphics: Whether to run the Unity simulator in no-graphics mode :int timeout_wait: Time (in seconds) to wait for connection from environment. :bool train_mode: Whether to run in training mode, speeding up the simulation, by default. :list args: Addition Unity command line arguments """ atexit.register(self._close) self.port = base_port + worker_id self._buffer_size = 12000 self._version_ = "API-9" self._loaded = ( False ) # If true, this means the environment was successfully loaded self.proc1 = ( None ) # The process that is started. If None, no process was started self.communicator = self.get_communicator(worker_id, base_port, timeout_wait) self.worker_id = worker_id # If the environment name is None, a new environment will not be launched # and the communicator will directly try to connect to an existing unity environment. # If the worker-id is not 0 and the environment name is None, an error is thrown if file_name is None and worker_id != 0: raise UnityEnvironmentException( "If the environment name is None, " "the worker-id must be 0 in order to connect with the Editor." ) if file_name is not None: self.executable_launcher(file_name, docker_training, no_graphics, args) else: logger.info( "Start training by pressing the Play button in the Unity Editor." ) self._loaded = True rl_init_parameters_in = UnityRLInitializationInput(seed=seed) try: aca_params = self.send_academy_parameters(rl_init_parameters_in) except UnityTimeOutException: self._close() raise # TODO : think of a better way to expose the academyParameters self._unity_version = aca_params.version if self._unity_version != self._version_: self._close() raise UnityEnvironmentException( "The API number is not compatible between Unity and python. Python API : {0}, Unity API : " "{1}.\nPlease go to https://github.com/Unity-Technologies/ml-agents to download the latest version " "of ML-Agents.".format(self._version_, self._unity_version) ) self._n_agents: Dict[str, int] = {} self._global_done: Optional[bool] = None self._academy_name = aca_params.name self._log_path = aca_params.log_path self._brains: Dict[str, BrainParameters] = {} self._brain_names: List[str] = [] self._external_brain_names: List[str] = [] for brain_param in aca_params.brain_parameters: self._brain_names += [brain_param.brain_name] self._brains[brain_param.brain_name] = BrainParameters.from_proto( brain_param ) if brain_param.is_training: self._external_brain_names += [brain_param.brain_name] self._num_brains = len(self._brain_names) self._num_external_brains = len(self._external_brain_names) self._resetParameters = dict(aca_params.environment_parameters.float_parameters) logger.info( "\n'{0}' started successfully!\n{1}".format(self._academy_name, str(self)) ) if self._num_external_brains == 0: logger.warning( " No Learning Brains set to train found in the Unity Environment. " "You will not be able to pass actions to your agent(s)." ) @property def logfile_path(self): return self._log_path @property def brains(self): return self._brains @property def global_done(self): return self._global_done @property def academy_name(self): return self._academy_name @property def number_brains(self): return self._num_brains @property def number_external_brains(self): return self._num_external_brains @property def brain_names(self): return self._brain_names @property def external_brain_names(self): return self._external_brain_names @staticmethod def get_communicator(worker_id, base_port, timeout_wait): return RpcCommunicator(worker_id, base_port, timeout_wait) @property def external_brains(self): external_brains = {} for brain_name in self.external_brain_names: external_brains[brain_name] = self.brains[brain_name] return external_brains @property def reset_parameters(self): return self._resetParameters def executable_launcher(self, file_name, docker_training, no_graphics, args): cwd = os.getcwd() file_name = ( file_name.strip() .replace(".app", "") .replace(".exe", "") .replace(".x86_64", "") .replace(".x86", "") ) true_filename = os.path.basename(os.path.normpath(file_name)) logger.debug("The true file name is {}".format(true_filename)) launch_string = None if platform == "linux" or platform == "linux2": candidates = glob.glob(os.path.join(cwd, file_name) + ".x86_64") if len(candidates) == 0: candidates = glob.glob(os.path.join(cwd, file_name) + ".x86") if len(candidates) == 0: candidates = glob.glob(file_name + ".x86_64") if len(candidates) == 0: candidates = glob.glob(file_name + ".x86") if len(candidates) > 0: launch_string = candidates[0] elif platform == "darwin": candidates = glob.glob( os.path.join( cwd, file_name + ".app", "Contents", "MacOS", true_filename ) ) if len(candidates) == 0: candidates = glob.glob( os.path.join(file_name + ".app", "Contents", "MacOS", true_filename) ) if len(candidates) == 0: candidates = glob.glob( os.path.join(cwd, file_name + ".app", "Contents", "MacOS", "*") ) if len(candidates) == 0: candidates = glob.glob( os.path.join(file_name + ".app", "Contents", "MacOS", "*") ) if len(candidates) > 0: launch_string = candidates[0] elif platform == "win32": candidates = glob.glob(os.path.join(cwd, file_name + ".exe")) if len(candidates) == 0: candidates = glob.glob(file_name + ".exe") if len(candidates) > 0: launch_string = candidates[0] if launch_string is None: self._close() raise UnityEnvironmentException( "Couldn't launch the {0} environment. " "Provided filename does not match any environments.".format( true_filename ) ) else: logger.debug("This is the launch string {}".format(launch_string)) # Launch Unity environment if not docker_training: subprocess_args = [launch_string] if no_graphics: subprocess_args += ["-nographics", "-batchmode"] subprocess_args += ["--port", str(self.port)] subprocess_args += args try: self.proc1 = subprocess.Popen(subprocess_args) except PermissionError as perm: # This is likely due to missing read or execute permissions on file. raise UnityEnvironmentException( f"Error when trying to launch environment - make sure " f"permissions are set correctly. For example " f'"chmod -R 755 {launch_string}"' ) from perm else: """ Comments for future maintenance: xvfb-run is a wrapper around Xvfb, a virtual xserver where all rendering is done to virtual memory. It automatically creates a new virtual server automatically picking a server number `auto-servernum`. The server is passed the arguments using `server-args`, we are telling Xvfb to create Screen number 0 with width 640, height 480 and depth 24 bits. Note that 640 X 480 are the default width and height. The main reason for us to add this is because we'd like to change the depth from the default of 8 bits to 24. Unfortunately, this means that we will need to pass the arguments through a shell which is why we set `shell=True`. Now, this adds its own complications. E.g SIGINT can bounce off the shell and not get propagated to the child processes. This is why we add `exec`, so that the shell gets launched, the arguments are passed to `xvfb-run`. `exec` replaces the shell we created with `xvfb`. """ docker_ls = ( "exec xvfb-run --auto-servernum" " --server-args='-screen 0 640x480x24'" " {0} --port {1}" ).format(launch_string, str(self.port)) self.proc1 = subprocess.Popen( docker_ls, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, ) def __str__(self): return ( """Unity Academy name: {0} Number of Brains: {1} Number of Training Brains : {2} Reset Parameters :\n\t\t{3}""".format( self._academy_name, str(self._num_brains), str(self._num_external_brains), "\n\t\t".join( [ str(k) + " -> " + str(self._resetParameters[k]) for k in self._resetParameters ] ), ) + "\n" + "\n".join([str(self._brains[b]) for b in self._brains]) ) def reset( self, config=None, train_mode=True, custom_reset_parameters=None ) -> AllBrainInfo: """ Sends a signal to reset the unity environment. :return: AllBrainInfo : A data structure corresponding to the initial reset state of the environment. """ if config is None: config = self._resetParameters elif config: logger.info( "Academy reset with parameters: {0}".format( ", ".join([str(x) + " -> " + str(config[x]) for x in config]) ) ) for k in config: if (k in self._resetParameters) and (isinstance(config[k], (int, float))): self._resetParameters[k] = config[k] elif not isinstance(config[k], (int, float)): raise UnityEnvironmentException( "The value for parameter '{0}'' must be an Integer or a Float.".format( k ) ) else: raise UnityEnvironmentException( "The parameter '{0}' is not a valid parameter.".format(k) ) if self._loaded: outputs = self.communicator.exchange( self._generate_reset_input(train_mode, config, custom_reset_parameters) ) if outputs is None: raise UnityCommunicationException("Communicator has stopped.") rl_output = outputs.rl_output s = self._get_state(rl_output) self._global_done = s[1] for _b in self._external_brain_names: self._n_agents[_b] = len(s[0][_b].agents) return s[0] else: raise UnityEnvironmentException("No Unity environment is loaded.") @timed def step( self, vector_action=None, memory=None, text_action=None, value=None, custom_action=None, ) -> AllBrainInfo: """ Provides the environment with an action, moves the environment dynamics forward accordingly, and returns observation, state, and reward information to the agent. :param value: Value estimates provided by agents. :param vector_action: Agent's vector action. Can be a scalar or vector of int/floats. :param memory: Vector corresponding to memory used for recurrent policies. :param text_action: Text action to send to environment for. :param custom_action: Optional instance of a CustomAction protobuf message. :return: AllBrainInfo : A Data structure corresponding to the new state of the environment. """ vector_action = {} if vector_action is None else vector_action memory = {} if memory is None else memory text_action = {} if text_action is None else text_action value = {} if value is None else value custom_action = {} if custom_action is None else custom_action # Check that environment is loaded, and episode is currently running. if not self._loaded: raise UnityEnvironmentException("No Unity environment is loaded.") elif self._global_done: raise UnityActionException( "The episode is completed. Reset the environment with 'reset()'" ) elif self.global_done is None: raise UnityActionException( "You cannot conduct step without first calling reset. " "Reset the environment with 'reset()'" ) else: if isinstance(vector_action, self.SINGLE_BRAIN_ACTION_TYPES): if self._num_external_brains == 1: vector_action = {self._external_brain_names[0]: vector_action} elif self._num_external_brains > 1: raise UnityActionException( "You have {0} brains, you need to feed a dictionary of brain names a keys, " "and vector_actions as values".format(self._num_brains) ) else: raise UnityActionException( "There are no external brains in the environment, " "step cannot take a vector_action input" ) if isinstance(memory, self.SINGLE_BRAIN_ACTION_TYPES): if self._num_external_brains == 1: memory = {self._external_brain_names[0]: memory} elif self._num_external_brains > 1: raise UnityActionException( "You have {0} brains, you need to feed a dictionary of brain names as keys " "and memories as values".format(self._num_brains) ) else: raise UnityActionException( "There are no external brains in the environment, " "step cannot take a memory input" ) if isinstance(text_action, self.SINGLE_BRAIN_TEXT_TYPES): if self._num_external_brains == 1: text_action = {self._external_brain_names[0]: text_action} elif self._num_external_brains > 1: raise UnityActionException( "You have {0} brains, you need to feed a dictionary of brain names as keys " "and text_actions as values".format(self._num_brains) ) else: raise UnityActionException( "There are no external brains in the environment, " "step cannot take a value input" ) if isinstance(value, self.SINGLE_BRAIN_ACTION_TYPES): if self._num_external_brains == 1: value = {self._external_brain_names[0]: value} elif self._num_external_brains > 1: raise UnityActionException( "You have {0} brains, you need to feed a dictionary of brain names as keys " "and state/action value estimates as values".format( self._num_brains ) ) else: raise UnityActionException( "There are no external brains in the environment, " "step cannot take a value input" ) if isinstance(custom_action, CustomAction): if self._num_external_brains == 1: custom_action = {self._external_brain_names[0]: custom_action} elif self._num_external_brains > 1: raise UnityActionException( "You have {0} brains, you need to feed a dictionary of brain names as keys " "and CustomAction instances as values".format(self._num_brains) ) else: raise UnityActionException( "There are no external brains in the environment, " "step cannot take a custom_action input" ) for brain_name in ( list(vector_action.keys()) + list(memory.keys()) + list(text_action.keys()) ): if brain_name not in self._external_brain_names: raise UnityActionException( "The name {0} does not correspond to an external brain " "in the environment".format(brain_name) ) for brain_name in self._external_brain_names: n_agent = self._n_agents[brain_name] if brain_name not in vector_action: if self._brains[brain_name].vector_action_space_type == "discrete": vector_action[brain_name] = ( [0.0] * n_agent * len(self._brains[brain_name].vector_action_space_size) ) else: vector_action[brain_name] = ( [0.0] * n_agent * self._brains[brain_name].vector_action_space_size[0] ) else: vector_action[brain_name] = self._flatten(vector_action[brain_name]) if brain_name not in memory: memory[brain_name] = [] else: if memory[brain_name] is None: memory[brain_name] = [] else: memory[brain_name] = self._flatten(memory[brain_name]) if brain_name not in text_action: text_action[brain_name] = [""] * n_agent else: if text_action[brain_name] is None: text_action[brain_name] = [""] * n_agent if isinstance(text_action[brain_name], str): text_action[brain_name] = [text_action[brain_name]] * n_agent if brain_name not in custom_action: custom_action[brain_name] = [None] * n_agent else: if custom_action[brain_name] is None: custom_action[brain_name] = [None] * n_agent if isinstance(custom_action[brain_name], CustomAction): custom_action[brain_name] = [ custom_action[brain_name] ] * n_agent number_text_actions = len(text_action[brain_name]) if not ((number_text_actions == n_agent) or number_text_actions == 0): raise UnityActionException( "There was a mismatch between the provided text_action and " "the environment's expectation: " "The brain {0} expected {1} text_action but was given {2}".format( brain_name, n_agent, number_text_actions ) ) discrete_check = ( self._brains[brain_name].vector_action_space_type == "discrete" ) expected_discrete_size = n_agent * len( self._brains[brain_name].vector_action_space_size ) continuous_check = ( self._brains[brain_name].vector_action_space_type == "continuous" ) expected_continuous_size = ( self._brains[brain_name].vector_action_space_size[0] * n_agent ) if not ( ( discrete_check and len(vector_action[brain_name]) == expected_discrete_size ) or ( continuous_check and len(vector_action[brain_name]) == expected_continuous_size ) ): raise UnityActionException( "There was a mismatch between the provided action and " "the environment's expectation: " "The brain {0} expected {1} {2} action(s), but was provided: {3}".format( brain_name, str(expected_discrete_size) if discrete_check else str(expected_continuous_size), self._brains[brain_name].vector_action_space_type, str(vector_action[brain_name]), ) ) step_input = self._generate_step_input( vector_action, memory, text_action, value, custom_action ) with hierarchical_timer("communicator.exchange"): outputs = self.communicator.exchange(step_input) if outputs is None: raise UnityCommunicationException("Communicator has stopped.") rl_output = outputs.rl_output state = self._get_state(rl_output) self._global_done = state[1] for _b in self._external_brain_names: self._n_agents[_b] = len(state[0][_b].agents) return state[0] def close(self): """ Sends a shutdown signal to the unity environment, and closes the socket connection. """ if self._loaded: self._close() else: raise UnityEnvironmentException("No Unity environment is loaded.") def _close(self): self._loaded = False self.communicator.close() if self.proc1 is not None: self.proc1.kill() @classmethod def _flatten(cls, arr) -> List[float]: """ Converts arrays to list. :param arr: numpy vector. :return: flattened list. """ if isinstance(arr, cls.SCALAR_ACTION_TYPES): arr = [float(arr)] if isinstance(arr, np.ndarray): arr = arr.tolist() if len(arr) == 0: return arr if isinstance(arr[0], np.ndarray): arr = [item for sublist in arr for item in sublist.tolist()] if isinstance(arr[0], list): arr = [item for sublist in arr for item in sublist] arr = [float(x) for x in arr] return arr def _get_state(self, output: UnityRLOutput) -> Tuple[AllBrainInfo, bool]: """ Collects experience information from all external brains in environment at current step. :return: a dictionary of BrainInfo objects. """ _data = {} global_done = output.global_done for brain_name in output.agentInfos: agent_info_list = output.agentInfos[brain_name].value _data[brain_name] = BrainInfo.from_agent_proto( self.worker_id, agent_info_list, self.brains[brain_name] ) return _data, global_done @timed def _generate_step_input( self, vector_action, memory, text_action, value, custom_action ) -> UnityInput: rl_in = UnityRLInput() for b in vector_action: n_agents = self._n_agents[b] if n_agents == 0: continue _a_s = len(vector_action[b]) // n_agents _m_s = len(memory[b]) // n_agents for i in range(n_agents): action = AgentActionProto( vector_actions=vector_action[b][i * _a_s : (i + 1) * _a_s], memories=memory[b][i * _m_s : (i + 1) * _m_s], text_actions=text_action[b][i], custom_action=custom_action[b][i], ) if b in value: if value[b] is not None: action.value = float(value[b][i]) rl_in.agent_actions[b].value.extend([action]) rl_in.command = 0 return self.wrap_unity_input(rl_in) def _generate_reset_input( self, training, config, custom_reset_parameters ) -> UnityInput: rl_in = UnityRLInput() rl_in.is_training = training rl_in.environment_parameters.CopyFrom(EnvironmentParametersProto()) for key in config: rl_in.environment_parameters.float_parameters[key] = config[key] if custom_reset_parameters is not None: rl_in.environment_parameters.custom_reset_parameters.CopyFrom( custom_reset_parameters ) rl_in.command = 1 return self.wrap_unity_input(rl_in) def send_academy_parameters( self, init_parameters: UnityRLInitializationInput ) -> UnityRLInitializationOutput: inputs = UnityInput() inputs.rl_initialization_input.CopyFrom(init_parameters) return self.communicator.initialize(inputs).rl_initialization_output @staticmethod def wrap_unity_input(rl_input: UnityRLInput) -> UnityInput: result = UnityInput() result.rl_input.CopyFrom(rl_input) return result