import unittest.mock as mock import pytest import os import numpy as np from mlagents.tf_utils import tf import yaml from mlagents.trainers.bc.models import BehavioralCloningModel import mlagents.trainers.tests.mock_brain as mb from mlagents.trainers.bc.policy import BCPolicy from mlagents.trainers.bc.offline_trainer import BCTrainer from mlagents.envs.mock_communicator import MockCommunicator from mlagents.trainers.tests.mock_brain import make_brain_parameters from mlagents.trainers.tests.test_trajectory import make_fake_trajectory from mlagents.envs.environment import UnityEnvironment from mlagents.trainers.brain_conversion_utils import ( step_result_to_brain_info, group_spec_to_brain_parameters, ) @pytest.fixture def dummy_config(): return yaml.safe_load( """ hidden_units: 32 learning_rate: 3.0e-4 num_layers: 1 use_recurrent: false sequence_length: 32 memory_size: 32 batches_per_epoch: 100 # Force code to use all possible batches batch_size: 32 summary_freq: 2000 max_steps: 4000 """ ) def create_bc_trainer(dummy_config, is_discrete=False, use_recurrent=False): mock_env = mock.Mock() if is_discrete: mock_brain = mb.create_mock_pushblock_brain() mock_braininfo = mb.create_mock_braininfo( num_agents=12, num_vector_observations=70 ) else: mock_brain = mb.create_mock_3dball_brain() mock_braininfo = mb.create_mock_braininfo( num_agents=12, num_vector_observations=8 ) mb.setup_mock_unityenvironment(mock_env, mock_brain, mock_braininfo) env = mock_env() trainer_parameters = dummy_config trainer_parameters["summary_path"] = "tmp" trainer_parameters["model_path"] = "tmp" trainer_parameters["demo_path"] = ( os.path.dirname(os.path.abspath(__file__)) + "/test.demo" ) trainer_parameters["use_recurrent"] = use_recurrent trainer = BCTrainer( mock_brain, trainer_parameters, training=True, load=False, seed=0, run_id=0 ) trainer.demonstration_buffer = mb.simulate_rollout(env, trainer.policy, 100) return trainer, env @pytest.mark.parametrize("use_recurrent", [True, False]) def test_bc_trainer_step(dummy_config, use_recurrent): trainer, env = create_bc_trainer(dummy_config, use_recurrent=use_recurrent) # Test get_step assert trainer.get_step == 0 # Test update policy trainer.update_policy() assert len(trainer.stats["Losses/Cloning Loss"]) > 0 # Test increment step trainer.increment_step(1) assert trainer.step == 1 def test_bc_trainer_process_trajectory(dummy_config): trainer, _ = create_bc_trainer(dummy_config) # Test process_trajectory agent_id = "test_agent" trajectory = make_fake_trajectory(length=15) trainer.process_trajectory(trajectory) assert len(trainer.stats["Environment/Cumulative Reward"]) > 0 # Assert that the done reset the steps assert trainer.episode_steps[agent_id] == 0 assert trainer.cumulative_rewards[agent_id] == 0 # Create a trajectory without a done trajectory = make_fake_trajectory(length=15, max_step_complete=True) trainer.process_trajectory(trajectory) assert trainer.episode_steps[agent_id] == 15 assert trainer.cumulative_rewards[agent_id] > 0 def test_bc_trainer_end_episode(dummy_config): trainer, _ = create_bc_trainer(dummy_config) trajectory = make_fake_trajectory(length=15) trainer.process_trajectory(trajectory) # Should set everything to 0 trainer.end_episode() agent_id = "test_agent" assert trainer.episode_steps[agent_id] == 0 assert trainer.cumulative_rewards[agent_id] == 0 @mock.patch("mlagents.envs.environment.UnityEnvironment.executable_launcher") @mock.patch("mlagents.envs.environment.UnityEnvironment.get_communicator") def test_bc_policy_evaluate(mock_communicator, mock_launcher, dummy_config): tf.reset_default_graph() mock_communicator.return_value = MockCommunicator( discrete_action=False, visual_inputs=0 ) env = UnityEnvironment(" ") env.reset() brain_name = env.get_agent_groups()[0] brain_info = step_result_to_brain_info( env.get_step_result(brain_name), env.get_agent_group_spec(brain_name) ) brain_params = group_spec_to_brain_parameters( brain_name, env.get_agent_group_spec(brain_name) ) trainer_parameters = dummy_config model_path = brain_name trainer_parameters["model_path"] = model_path trainer_parameters["keep_checkpoints"] = 3 policy = BCPolicy(0, brain_params, trainer_parameters, False) run_out = policy.evaluate(brain_info) assert run_out["action"].shape == (3, 2) env.close() def test_cc_bc_model(): tf.reset_default_graph() with tf.Session() as sess: with tf.variable_scope("FakeGraphScope"): model = BehavioralCloningModel( make_brain_parameters(discrete_action=False, visual_inputs=0) ) init = tf.global_variables_initializer() sess.run(init) run_list = [model.sample_action, model.policy] feed_dict = { model.batch_size: 2, model.sequence_length: 1, model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]), } sess.run(run_list, feed_dict=feed_dict) # env.close() def test_dc_bc_model(): tf.reset_default_graph() with tf.Session() as sess: with tf.variable_scope("FakeGraphScope"): model = BehavioralCloningModel( make_brain_parameters(discrete_action=True, visual_inputs=0) ) init = tf.global_variables_initializer() sess.run(init) run_list = [model.sample_action, model.action_probs] feed_dict = { model.batch_size: 2, model.dropout_rate: 1.0, model.sequence_length: 1, model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]), model.action_masks: np.ones([2, 2], dtype=np.float32), } sess.run(run_list, feed_dict=feed_dict) def test_visual_dc_bc_model(): tf.reset_default_graph() with tf.Session() as sess: with tf.variable_scope("FakeGraphScope"): model = BehavioralCloningModel( make_brain_parameters(discrete_action=True, visual_inputs=2) ) init = tf.global_variables_initializer() sess.run(init) run_list = [model.sample_action, model.action_probs] feed_dict = { model.batch_size: 2, model.dropout_rate: 1.0, model.sequence_length: 1, model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]), model.visual_in[0]: np.ones([2, 40, 30, 3], dtype=np.float32), model.visual_in[1]: np.ones([2, 40, 30, 3], dtype=np.float32), model.action_masks: np.ones([2, 2], dtype=np.float32), } sess.run(run_list, feed_dict=feed_dict) def test_visual_cc_bc_model(): tf.reset_default_graph() with tf.Session() as sess: with tf.variable_scope("FakeGraphScope"): model = BehavioralCloningModel( make_brain_parameters(discrete_action=False, visual_inputs=2) ) init = tf.global_variables_initializer() sess.run(init) run_list = [model.sample_action, model.policy] feed_dict = { model.batch_size: 2, model.sequence_length: 1, model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]), model.visual_in[0]: np.ones([2, 40, 30, 3], dtype=np.float32), model.visual_in[1]: np.ones([2, 40, 30, 3], dtype=np.float32), } sess.run(run_list, feed_dict=feed_dict) if __name__ == "__main__": pytest.main()