behaviors: CrawlerStatic: trainer_type: sac_transfer hyperparameters: learning_rate: 0.0003 learning_rate_schedule: linear batch_size: 256 buffer_size: 3000000 buffer_init_steps: 2000 tau: 0.005 steps_per_update: 20.0 save_replay_buffer: false init_entcoef: 1.0 reward_signal_steps_per_update: 20.0 encoder_layers: 2 policy_layers: 3 forward_layers: 2 value_layers: 2 feature_size: 128 action_layers: 2 action_feature_size: 128 separate_policy_train: true separate_policy_net: true # separate_model_train: true # separate_value_net: true reuse_encoder: true in_epoch_alter: false in_batch_alter: true use_op_buffer: false use_var_predict: true with_prior: false predict_return: true use_transfer: true load_model: true train_model: false load_action: true train_action: false transfer_path: "results/oldcs-sep-p/CrawlerStatic" network_settings: normalize: true hidden_units: 512 num_layers: 3 vis_encode_type: simple reward_signals: extrinsic: gamma: 0.995 strength: 1.0 keep_checkpoints: 5 max_steps: 3000000 time_horizon: 1000 summary_freq: 30000 threaded: true