behaviors: 3DBallHard: trainer_type: sac_transfer hyperparameters: learning_rate: 0.0003 learning_rate_schedule: linear batch_size: 256 buffer_size: 500000 buffer_init_steps: 0 tau: 0.005 steps_per_update: 10.0 save_replay_buffer: false init_entcoef: 1.0 reward_signal_steps_per_update: 10.0 encoder_layers: 2 policy_layers: 0 forward_layers: 0 value_layers: 1 feature_size: 64 action_layers: 1 action_feature_size: 32 # separate_value_net: true separate_policy_train: true separate_model_train: true # separate_value_train: true reuse_encoder: true in_epoch_alter: false in_batch_alter: true use_op_buffer: false use_var_predict: true with_prior: false predict_return: true use_bisim: false use_transfer: true load_model: false load_encoder: true train_encoder: false load_action: true train_action: false transfer_path: "results/ball-s1/3DBall" network_settings: normalize: true hidden_units: 128 num_layers: 2 vis_encode_type: simple reward_signals: extrinsic: gamma: 0.99 strength: 1.0 keep_checkpoints: 5 max_steps: 500000 time_horizon: 1000 summary_freq: 12000 threaded: true parameter_randomization: mass: sampler_type: uniform sampler_parameters: min_value: 2.0 max_value: 2.0