import abc from typing import NamedTuple, List, Tuple import numpy as np from mlagents.tf_utils import tf from mlagents.trainers.models import ModelUtils EPSILON = 1e-6 # Small value to avoid divide by zero class OutputDistribution(abc.ABC): @abc.abstractproperty def log_probs(self) -> tf.Tensor: """ Returns a Tensor that when evaluated, produces the per-action log probabilities of this distribution. The shape of this Tensor should be equivalent to (batch_size x the number of actions) produced in sample. """ pass @abc.abstractproperty def total_log_probs(self) -> tf.Tensor: """ Returns a Tensor that when evaluated, produces the total log probability for a single sample. The shape of this Tensor should be equivalent to (batch_size x 1) produced in sample. """ pass @abc.abstractproperty def sample(self) -> tf.Tensor: """ Returns a Tensor that when evaluated, produces a sample of this OutputDistribution. """ pass @abc.abstractproperty def entropy(self) -> tf.Tensor: """ Returns a Tensor that when evaluated, produces the entropy of this distribution. """ pass class DiscreteOutputDistribution(OutputDistribution): @abc.abstractproperty def sample_onehot(self) -> tf.Tensor: """ Returns a one-hot version of the output. """ class GaussianDistribution(OutputDistribution): """ A Gaussian output distribution for continuous actions. """ class MuSigmaTensors(NamedTuple): mu: tf.Tensor log_sigma: tf.Tensor sigma: tf.Tensor def __init__( self, logits: tf.Tensor, act_size: List[int], reparameterize: bool = False, tanh_squash: bool = False, condition_sigma: bool = True, log_sigma_min: float = -20, log_sigma_max: float = 2, ): """ A Gaussian output distribution for continuous actions. :param logits: Hidden layer to use as the input to the Gaussian distribution. :param act_size: List containing the number of continuous actions. :param reparameterize: Whether or not to use the reparameterization trick (block gradients through log probability calculation.) :param tanh_squash: Squash the output using tanh, constraining it between -1 and 1. From: Haarnoja et. al, https://arxiv.org/abs/1801.01290 :param log_sigma_min: Minimum log standard deviation to clip by. :param log_sigma_max: Maximum log standard deviation to clip by. """ encoded = self._create_mu_log_sigma( logits, act_size, log_sigma_min, log_sigma_max, condition_sigma=condition_sigma, ) self._sampled_policy = self._create_sampled_policy(encoded) if not reparameterize: _sampled_policy_probs = tf.stop_gradient(self._sampled_policy) else: _sampled_policy_probs = self._sampled_policy self._all_probs = self._create_log_probs(_sampled_policy_probs, encoded) if tanh_squash: self._sampled_policy = tf.tanh(self._sampled_policy) self._all_probs = self._do_squash_correction_for_tanh( self._all_probs, self._sampled_policy ) self._total_prob = tf.reduce_sum(self._all_probs, axis=1, keepdims=True) self._entropy = self._create_entropy(encoded) def _create_mu_log_sigma( self, logits: tf.Tensor, act_size: List[int], log_sigma_min: float, log_sigma_max: float, condition_sigma: bool, ) -> "GaussianDistribution.MuSigmaTensors": mu = tf.layers.dense( logits, act_size[0], activation=None, name="mu", kernel_initializer=ModelUtils.scaled_init(0.01), reuse=tf.AUTO_REUSE, ) if condition_sigma: # Policy-dependent log_sigma_sq log_sigma = tf.layers.dense( logits, act_size[0], activation=None, name="log_std", kernel_initializer=ModelUtils.scaled_init(0.01), ) else: log_sigma = tf.get_variable( "log_std", [act_size[0]], dtype=tf.float32, initializer=tf.zeros_initializer(), ) log_sigma = tf.clip_by_value(log_sigma, log_sigma_min, log_sigma_max) sigma = tf.exp(log_sigma) return self.MuSigmaTensors(mu, log_sigma, sigma) def _create_sampled_policy( self, encoded: "GaussianDistribution.MuSigmaTensors" ) -> tf.Tensor: epsilon = tf.random_normal(tf.shape(encoded.mu)) sampled_policy = encoded.mu + encoded.sigma * epsilon return sampled_policy def _create_log_probs( self, sampled_policy: tf.Tensor, encoded: "GaussianDistribution.MuSigmaTensors" ) -> tf.Tensor: _gauss_pre = -0.5 * ( ((sampled_policy - encoded.mu) / (encoded.sigma + EPSILON)) ** 2 + 2 * encoded.log_sigma + np.log(2 * np.pi) ) return _gauss_pre def _create_entropy( self, encoded: "GaussianDistribution.MuSigmaTensors" ) -> tf.Tensor: single_dim_entropy = 0.5 * tf.reduce_mean( tf.log(2 * np.pi * np.e) + 2 * encoded.log_sigma ) # Make entropy the right shape return tf.ones_like(tf.reshape(encoded.mu[:, 0], [-1])) * single_dim_entropy def _do_squash_correction_for_tanh(self, probs, squashed_policy): """ Adjust probabilities for squashed sample before output """ adjusted_probs = probs - tf.log(1 - squashed_policy ** 2 + EPSILON) return adjusted_probs @property def total_log_probs(self) -> tf.Tensor: return self._total_prob @property def log_probs(self) -> tf.Tensor: return self._all_probs @property def sample(self) -> tf.Tensor: return self._sampled_policy @property def entropy(self) -> tf.Tensor: return self._entropy class MultiCategoricalDistribution(DiscreteOutputDistribution): """ A categorical distribution for multi-branched discrete actions. Also supports action masking. """ def __init__(self, logits: tf.Tensor, act_size: List[int], action_masks: tf.Tensor): """ A categorical distribution for multi-branched discrete actions. :param logits: Hidden layer to use as the input to the Gaussian distribution. :param act_size: List containing the number of discrete actions per branch. :param action_masks: Tensor representing action masks. Should be of length sum(act_size), and 0 for masked and 1 for unmasked. """ unmasked_log_probs = self._create_policy_branches(logits, act_size) ( self._sampled_policy, self._all_probs, action_index, ) = self._get_masked_actions_probs(unmasked_log_probs, act_size, action_masks) self._sampled_onehot = self._action_onehot(self._sampled_policy, act_size) self._entropy = self._create_entropy(self._all_probs, action_index, act_size) self._total_prob = self._get_log_probs( self._sampled_onehot, self._all_probs, action_index, act_size ) def _create_policy_branches( self, logits: tf.Tensor, act_size: List[int] ) -> List[tf.Tensor]: policy_branches = [] for size in act_size: policy_branches.append( tf.layers.dense( logits, size, activation=None, use_bias=False, kernel_initializer=ModelUtils.scaled_init(0.01), ) ) return policy_branches def _get_masked_actions_probs( self, unmasked_log_probs: List[tf.Tensor], act_size: List[int], action_masks: tf.Tensor, ) -> Tuple[tf.Tensor, tf.Tensor, np.ndarray]: output, _, all_log_probs = ModelUtils.create_discrete_action_masking_layer( unmasked_log_probs, action_masks, act_size ) action_idx = [0] + list(np.cumsum(act_size)) return output, all_log_probs, action_idx def _action_onehot(self, sample: tf.Tensor, act_size: List[int]) -> tf.Tensor: action_oh = tf.concat( [tf.one_hot(sample[:, i], act_size[i]) for i in range(len(act_size))], axis=1, ) return action_oh def _get_log_probs( self, sample_onehot: tf.Tensor, all_log_probs: tf.Tensor, action_idx: List[int], act_size: List[int], ) -> tf.Tensor: log_probs = tf.reduce_sum( ( tf.stack( [ -tf.nn.softmax_cross_entropy_with_logits_v2( labels=sample_onehot[:, action_idx[i] : action_idx[i + 1]], logits=all_log_probs[:, action_idx[i] : action_idx[i + 1]], ) for i in range(len(act_size)) ], axis=1, ) ), axis=1, keepdims=True, ) return log_probs def _create_entropy( self, all_log_probs: tf.Tensor, action_idx: List[int], act_size: List[int] ) -> tf.Tensor: entropy = tf.reduce_sum( ( tf.stack( [ tf.nn.softmax_cross_entropy_with_logits_v2( labels=tf.nn.softmax( all_log_probs[:, action_idx[i] : action_idx[i + 1]] ), logits=all_log_probs[:, action_idx[i] : action_idx[i + 1]], ) for i in range(len(act_size)) ], axis=1, ) ), axis=1, ) return entropy @property def log_probs(self) -> tf.Tensor: return self._all_probs @property def total_log_probs(self) -> tf.Tensor: return self._total_prob @property def sample(self) -> tf.Tensor: return self._sampled_policy @property def sample_onehot(self) -> tf.Tensor: return self._sampled_onehot @property def entropy(self) -> tf.Tensor: return self._entropy