import pytest from mlagents.torch_utils import torch from mlagents.trainers.sac.optimizer_torch import TorchSACOptimizer from mlagents.trainers.policy.torch_policy import TorchPolicy from mlagents.trainers.tests import mock_brain as mb from mlagents.trainers.settings import NetworkSettings from mlagents.trainers.tests.dummy_config import ( # noqa: F401 sac_dummy_config, curiosity_dummy_config, ) @pytest.fixture def dummy_config(): return sac_dummy_config() VECTOR_ACTION_SPACE = 2 VECTOR_OBS_SPACE = 8 DISCRETE_ACTION_SPACE = [3, 3, 3, 2] BUFFER_INIT_SAMPLES = 64 NUM_AGENTS = 12 def create_sac_optimizer_mock(dummy_config, use_rnn, use_discrete, use_visual): mock_brain = mb.setup_test_behavior_specs( use_discrete, use_visual, vector_action_space=DISCRETE_ACTION_SPACE if use_discrete else VECTOR_ACTION_SPACE, vector_obs_space=VECTOR_OBS_SPACE if not use_visual else 0, ) trainer_settings = dummy_config trainer_settings.network_settings.memory = ( NetworkSettings.MemorySettings(sequence_length=16, memory_size=12) if use_rnn else None ) policy = TorchPolicy(0, mock_brain, trainer_settings, "test", False) optimizer = TorchSACOptimizer(policy, trainer_settings) return optimizer @pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"]) @pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"]) @pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"]) def test_sac_optimizer_update(dummy_config, rnn, visual, discrete): torch.manual_seed(0) # Test evaluate optimizer = create_sac_optimizer_mock( dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual ) # Test update update_buffer = mb.simulate_rollout( BUFFER_INIT_SAMPLES, optimizer.policy.behavior_spec, memory_size=24 ) # Mock out reward signal eval update_buffer["extrinsic_rewards"] = update_buffer["environment_rewards"] return_stats = optimizer.update( update_buffer, num_sequences=update_buffer.num_experiences // optimizer.policy.sequence_length, ) # Make sure we have the right stats required_stats = [ "Losses/Policy Loss", "Losses/Value Loss", "Losses/Q1 Loss", "Losses/Q2 Loss", "Policy/Continuous Entropy Coeff", "Policy/Discrete Entropy Coeff", "Policy/Learning Rate", ] for stat in required_stats: assert stat in return_stats.keys() @pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"]) def test_sac_update_reward_signals( dummy_config, curiosity_dummy_config, discrete # noqa: F811 ): # Add a Curiosity module dummy_config.reward_signals = curiosity_dummy_config optimizer = create_sac_optimizer_mock( dummy_config, use_rnn=False, use_discrete=discrete, use_visual=False ) # Test update, while removing PPO-specific buffer elements. update_buffer = mb.simulate_rollout( BUFFER_INIT_SAMPLES, optimizer.policy.behavior_spec ) # Mock out reward signal eval update_buffer["extrinsic_rewards"] = update_buffer["environment_rewards"] update_buffer["curiosity_rewards"] = update_buffer["environment_rewards"] return_stats = optimizer.update_reward_signals( {"curiosity": update_buffer}, num_sequences=update_buffer.num_experiences ) required_stats = ["Losses/Curiosity Forward Loss", "Losses/Curiosity Inverse Loss"] for stat in required_stats: assert stat in return_stats.keys() if __name__ == "__main__": pytest.main()