# # Unity ML Agents # ## Proximal Policy Optimization (PPO) # Contains an implementation of PPO as described [here](https://arxiv.org/abs/1707.06347). from docopt import docopt import os from ppo.models import * from ppo.trainer import Trainer from unityagents import UnityEnvironment _USAGE = ''' Usage: ppo () [options] Options: --help Show this message. --curriculum= Curriculum json file for environment [default: None] --max-steps= Maximum number of steps to run environment [default: 1e6]. --run-path= The sub-directory name for model and summary statistics [default: ppo]. --load Whether to load the model or randomly initialize [default: False]. --train Whether to train model, or only run inference [default: False]. --summary-freq= Frequency at which to save training statistics [default: 10000]. --save-freq= Frequency at which to save model [default: 50000]. --gamma= Reward discount rate [default: 0.99]. --lambd= Lambda parameter for GAE [default: 0.95]. --time-horizon= How many steps to collect per agent before adding to buffer [default: 2048]. --beta= Strength of entropy regularization [default: 1e-3]. --num-epoch= Number of gradient descent steps per batch of experiences [default: 5]. --epsilon= Acceptable threshold around ratio of old and new policy probabilities [default: 0.2]. --buffer-size= How large the experience buffer should be before gradient descent [default: 2048]. --learning-rate= Model learning rate [default: 3e-4]. --hidden-units= Number of units in hidden layer [default: 64]. --batch-size= How many experiences per gradient descent update step [default: 64]. --keep-checkpoints= How many model checkpoints to keep [default: 5]. --worker-id= Number to add to communication port (5005). Used for asynchronous agent scenarios [default: 0]. ''' options = docopt(_USAGE) print(options) # General parameters max_steps = float(options['--max-steps']) model_path = './models/{}'.format(str(options['--run-path'])) summary_path = './summaries/{}'.format(str(options['--run-path'])) load_model = options['--load'] train_model = options['--train'] summary_freq = int(options['--summary-freq']) save_freq = int(options['--save-freq']) env_name = options[''] keep_checkpoints = int(options['--keep-checkpoints']) worker_id = int(options['--worker-id']) curriculum_file = str(options['--curriculum']) if curriculum_file == "None": curriculum_file = None # Algorithm-specific parameters for tuning gamma = float(options['--gamma']) lambd = float(options['--lambd']) time_horizon = int(options['--time-horizon']) beta = float(options['--beta']) num_epoch = int(options['--num-epoch']) epsilon = float(options['--epsilon']) buffer_size = int(options['--buffer-size']) learning_rate = float(options['--learning-rate']) hidden_units = int(options['--hidden-units']) batch_size = int(options['--batch-size']) env = UnityEnvironment(file_name=env_name, worker_id=worker_id, curriculum=curriculum_file) print(str(env)) brain_name = env.brain_names[0] tf.reset_default_graph() # Create the Tensorflow model graph ppo_model = create_agent_model(env, lr=learning_rate, h_size=hidden_units, epsilon=epsilon, beta=beta, max_step=max_steps) is_continuous = (env.brains[brain_name].action_space_type == "continuous") use_observations = (env.brains[brain_name].number_observations > 0) use_states = (env.brains[brain_name].state_space_size > 0) if not os.path.exists(model_path): os.makedirs(model_path) if not os.path.exists(summary_path): os.makedirs(summary_path) init = tf.global_variables_initializer() saver = tf.train.Saver(max_to_keep=keep_checkpoints) def get_progress(): if curriculum_file is not None: if env._curriculum.measure_type == "progress": return steps / max_steps elif env._curriculum.measure_type == "reward": return last_reward else: return None else: return None with tf.Session() as sess: # Instantiate model parameters if load_model: print('Loading Model...') ckpt = tf.train.get_checkpoint_state(model_path) saver.restore(sess, ckpt.model_checkpoint_path) else: sess.run(init) steps, last_reward = sess.run([ppo_model.global_step, ppo_model.last_reward]) summary_writer = tf.summary.FileWriter(summary_path) info = env.reset(train_mode=train_model, progress=get_progress())[brain_name] trainer = Trainer(ppo_model, sess, info, is_continuous, use_observations, use_states, train_model) while steps <= max_steps or not train_model: if env.global_done: info = env.reset(train_mode=train_model, progress=get_progress())[brain_name] # Decide and take an action new_info = trainer.take_action(info, env, brain_name, steps) info = new_info trainer.process_experiences(info, time_horizon, gamma, lambd) if len(trainer.training_buffer['actions']) > buffer_size and train_model: # Perform gradient descent with experience buffer trainer.update_model(batch_size, num_epoch) if steps % summary_freq == 0 and steps != 0 and train_model: # Write training statistics to tensorboard. trainer.write_summary(summary_writer, steps, env._curriculum.lesson_number) if steps % save_freq == 0 and steps != 0 and train_model: # Save Tensorflow model save_model(sess, model_path=model_path, steps=steps, saver=saver) if train_model: steps += 1 sess.run(ppo_model.increment_step) if len(trainer.stats['cumulative_reward']) > 0: mean_reward = np.mean(trainer.stats['cumulative_reward']) sess.run(ppo_model.update_reward, feed_dict={ppo_model.new_reward: mean_reward}) last_reward = sess.run(ppo_model.last_reward) # Final save Tensorflow model if steps != 0 and train_model: save_model(sess, model_path=model_path, steps=steps, saver=saver) env.close() export_graph(model_path, env_name)